RNAscope

Role of Eosinophils in Purinergic Receptor P2X3Expression in Mouse Sensory Neurons

: P2X3 purinoceptors are expressed by airway sensory neurons and are activated by extracellular ATP released during periods of cell stress. In asthma, sensitivity to ATP is increased. Airway eosinophilia, which is common in a majority of asthmatics, increases airway epithelial sensory nerve density in mice and in humans. Whether eosinophils increase neuronal P2X3 expression in asthma is unknown.

Single Cell RNA Sequencing Identifies G-Protein Coupled Receptor 87 as a Novel Basal Cell Marker of Distal Honeycomb Cysts in Idiopathic Pulmonary Fibrosis

RATIONALE: Idiopathic Pulmonary Fibrosis (IPF) is an age-related progressive and fatal lung disease with limited therapeutic options. IPF exhibits several pathological features of epithelial reprogramming, including cellular senescence. Moreover, distal airway remodeling and bronchiolization can result in honeycomb cysts. The molecular and cellular mechanisms that lead to this prominent phenotype, however, still remain poorly characterized. Here, we aimed to decipher the IPF distal bronchiole and alveolar cell subtypes and their potential contribution to IPF development and progression.

Genetics at the Cell Level

The Human Cell Atlas (HCA) is an international consortium established at the end of 2016 with the mission of mapping and characterizing all cells in the human body in terms of their distinctive patterns of gene expression, physiological states, and location (Rozenblatt-Rosen et al., 2017); (Regev et al., 2017) (http://www.humancellatlas.org" xmlns:xlink="http://www.w3.org/1999/xlink">www.humancellatlas.org).

Single-cell molecular and functional mapping of POMC neurons in obesity: a multi-modal approach

The brain plays a crucial role in maintaining the bodys energy needs, a process involving the activity of a group of hypothalamic neurons that express the neuropeptidergic marker pro-opiomelanocortin (POMC). POMC neuronal dysfunction can cause obesity and its associated metabolic sequelae. However, this population of neurons is highly diverse at a molecular and functional level, and whether or not such heterogeneity is implicated in disease establishment or progression has yet to be elucidated.

Sigh Generation in Prebötzinger Complex

We elucidated neural mechanisms underlying sighing. Photostimulation of parafacial (pF) neuromedin B ( NMB) or gastrin releasing peptide (GRP) or preBötC NMBR or GRPR neurons elicited ectopic sighs with latency inversely related to time from the preceding endogenous sigh. Of particular note, ectopic sighs could be produced without involvement of these peptides or their receptors in preBötC. Moreover, chemogenetic or optogenetic activation of preBötC SST neurons induced sighing, even in the presence of NMBR or GRPR antagonists.

Odorant Receptor Choice Mechanism Revealed by Analysis of a Highly Represented Odorant Receptor Transgene

In the mouse, more than 1,100 odorant receptors (ORs) are expressed in a monogenic and monoallelic fashion, referred to as singular gene expression. Using a 21bp singular-choice enhancer (x21), we radically increase representation of olfactory sensory neurons (OSNs) choosing a 5x21 enhanced OR transgene, but not overexpression of its mRNA on a per cell basis. RNA-sequencing and differential expression analysis identified 425 differentially expressed genes (DEGs). ORs make up 86% of all DEGs, of which 325 have decreased representation and 40 have increased representation.

Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors

Patient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses.

[Value of albumin RNAscope in situ hybridization in diagnosis and differential diagnosis of hepatocellular carcinoma]

Objective: To investigate the utility of albumin RNAscope in situ hybridization in the diagnosis and differential diagnosis of hepatocellular carcinoma and its mimics. Methods: One hundred and fifty-two cases of hepatocellular carcinoma and its mimics and 33 cases of normal tissue were selected from the pathology database of the Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from January 2013 to December 2019. Tissue microarrays were constructed and RNAscope in situ hybridization was performed to detect the expression of albumin mRNA.

Current Perspectives on Selective Dopamine D3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders

Over three decades of evidence indicate that dopamine (DA) D3 receptors (D3R) are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders (SUD). The expectation that a selective D3R antagonist/partial agonist would be efficacious for the treatment of SUD is based on the following key observations.

Hybridization Chain Reaction for mRNA Localization in Single Cells from Mouse and Human Cryosections

In situ hybridization has been a robust method for detection of mRNA expression in whole-mount samples or tissue sections for more than 50 years. Recent technical advances for in situ hybridization have incorporated oligo-based probes that attain greater tissue penetration and signal amplification steps with restricted localization for visualization of specific mRNAs within single cells. One such method is third-generation in situ hybridization chain reaction (V3HCR).

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com