RNAscope Fluorescent Multiplex Assay

Co-localization of Three Gonadotropin-Releasing Hormone Transcripts in Larval, Parasitic, and Adult Sea Lamprey Brains.

RNA expression of lamprey gonadotropin-releasing hormone (lGnRH)-I, -II, and -III was demonstrated in the brains of larval, parasitic phase and adult sea lampreys, Petromyzon marinus, using a highly sensitive triple-label in situ hybridization technique.

Distinct Projection Targets Define Subpopulations of Mouse Brainstem Vagal Neurons that Express the Autism-Associated MET Receptor Tyrosine Kinase.

Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase.

Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior

Behavioral manifestations of drug-seeking behavior are causally linked to alterations of synaptic strength onto nucleus accumbens (NAc) medium spiny neurons (MSN). Although neuron-driven changes in physiology and behavior are well characterized, there is a lack of knowledge of the role of the immune system in mediating such effects. Toll-like receptor 4 (TLR4) is a pattern recognition molecule of the innate immune system, and evidence suggests that it modulates drug-related behavior.

Identification of a Brainstem Circuit Controlling Feeding

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined.

ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine levels and regulates spatial/working memory behaviors

Genetic variants of Neuregulin 1 (NRG1) and its neuronal tyrosine kinase receptor ErbB4 are associated with risk for schizophrenia, a neurodevelopmental disorder characterized by excitatory/inhibitory imbalance and dopamine (DA) dysfunction. To date, most ErbB4 studies have focused on GABAergic interneurons in the hippocampus and neocortex, particularly fast-spiking parvalbumin-positive (PV+) basket cells.

Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression

Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed.

Regulator of G protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion

In pancreatic β cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in β cells remains largely unknown.

Molecular Effects of Stromal Selective Targeting by uPAR Retargeted Oncolytic Virus in Breast Cancer

The tumor microenvironment (TME) is a relevant target for novel biological therapies. MV-m-uPA and MV-h-uPA are fully retargeted, species-specific, oncolytic measles viruses (MVs) directed against murine or human urokinase receptor (PLAUR/uPAR), expressed in tumor and stromal cells. The effects of stromal selective targeting by uPAR retargeted MVs were investigated.

Schisantherin A Attenuates Ischemia/Reperfusion-induced Neuronal Injury in Rats via Regulation of TLR4 and C5aR1 Signaling Pathways.

Toll-like receptor 4 (TLR4) and C5aR1 (CD88) have been recognized as potential therapeutic targets for the reduction of inflammation and secondary damage and improvement of outcome after ischemia and reperfusion (I/R). The inflammatory responses which induce cell apoptosis and necrosis after I/R brain injury lead to a limited process of neural repair.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com