RNAscope Fluorescent Multiplex Assay

Itch suppression in mice and dogs by modulation of spinal α2 and α3GABAA receptors

Chronic itch is a highly debilitating condition affecting about 10% of the general population. The relay of itch signals is under tight control by inhibitory circuits of the spinal dorsal horn, which may offer a hitherto unexploited therapeutic opportunity.

Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain

The mammalian brain is composed of diverse, specialized cell populations. To systematically ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA expression in 690,000 individual cells sampled from 9 regions of the adult mouse brain. We identified 565 transcriptionally distinct groups of cells using computational approaches developed to distinguish biological from technical signals.

Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development.

The mammary gland consists of cells with gene expression patterns reflecting their cellular origins, function, and spatiotemporal context. However, knowledge of developmental kinetics and mechanisms of lineage specification is lacking. We address this significant knowledge gap by generating a single-cell transcriptome atlas encompassing embryonic, postnatal, and adult mouse mammary development.

Unbiased classification of mosquito blood cells by single-cell genomics and high-content imaging.

Mosquito blood cells are immune cells that help control infection by vector-borne pathogens. Despite their importance, little is known about mosquito blood cell biology beyond morphological and functional criteria used for their classification.

RNA velocity of single cells

RNA abundance is a powerful indicator of the state of individual cells.

Molecular Architecture of the Mouse Nervous System

The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides.

Neuronal Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce Fibroblast Growth Factor 21

Stress adaptation is essential for neuronal health. While the fundamental role of mitochondria in neuronal development has been demonstrated, it is still not clear how adult neurons respond to alterations in mitochondrial function and how neurons sense, signal, and respond to dysfunction of mitochondria and their interacting organelles.

Mu-opioid receptors in nociceptive afferents produce a sustained suppression of hyperalgesia in chronic pain.

The latent sensitization model of chronic pain reveals that recovery from some types of long-term hyperalgesia is an altered state in which nociceptive sensitization persists but is suppressed by the ongoing activity of analgesic receptors such as μ-opioid receptors (MORs). To determine whether these MORs are the ones present in nociceptive afferents, we bred mice expressing Cre-recombinase under the Nav1.8 channel promoter (Nav1.8cre) with MOR-floxed mice (flMOR).

Host Long Noncoding RNA lncRNA-PAAN Regulates the Replication of Influenza A Virus.

The productive infection of influenza A virus (IAV) depends on host factors. However, the involvement of long non-coding RNAs (lncRNAs) in IAV infection remains largely uninvestigated. In this work, we have discovered a human lncRNA, named lncRNA-PAAN (PA-associated noncoding RNA) that enhances IAV replication. The level of lncRNA-PAAN increases upon infection of IAV, but not other viruses, nor interferon treatment, suggesting specific up-regulation of lncRNA-PAAN expression by IAV.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com