RNAscope Fluorescent Multiplex Assay

Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq.

Striatal locally projecting neurons, or interneurons, act on nearby circuits and shape functional output to the rest of the basal ganglia. We performed single-cell RNA sequencing of striatal cells enriching for interneurons.

Cell-type-specific interrogation of CeA Drd2 neurons to identify targets for pharmacological modulation of fear extinction

Behavioral and molecular characterization of cell-type-specific populations governing fear learning and behavior is a promising avenue for the rational identification of potential 

Activin receptor-like kinase 1 is associated with immune cell infiltration and regulates CLEC14A transcription in cancer

Cancer cells sustain their metabolic needs through nutrients and oxygen supplied by the bloodstream. The requirement for tumor angiogenesis has been therapeutically exploited in the clinical setting mainly by means of inhibition of the vascular endothelial growth factor family of ligands and receptors.

Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype.

Genome-wide association studies have repeatedly mapped susceptibility loci for emphysema to genes that modify hedgehog signaling, but the functional relevance of hedgehog signaling to this morbid disease remains unclear. In the current study, we identified a broad population of mesenchymal cells in the adult murine lung receptive to hedgehog signaling, characterized by higher activation of hedgehog surrounding the proximal airway relative to the distal alveoli.

CRHR2 (Corticotropin-Releasing Hormone Receptor 2) in the Nucleus of the Solitary Tract Contributes to Intermittent Hypoxia-Induced Hypertension

This study tested the hypothesis that CRHRs (corticotropin-releasing hormone receptors) in the nucleus of the solitary tract (NTS) contribute to the hypertension induced by intermittent hypoxia (IH) exposure in rats. Initial studies using in situ hybridization revealed low mRNA level of CRHR1 (CRH type 1 receptor) but high mRNA level of CRHR2 (CRH type 2 receptor) in the NTS. Calcium imaging studies on NTS slice preparations using Fura-2-acetoxymethyl ester demonstrated that CRH induced a transient increase of intracellular calcium level.

Simultaneous B and T cell acute lymphoblastic leukemias in zebrafish driven by transgenic MYC: implications for oncogenesis and lymphopoiesis

Precursor-B cell acute lymphoblastic leukemia (pre-B ALL) is the most common pediatric cancer, but there are no useful zebrafish pre-B ALL models. We describe the first highly- penetrant zebrafish pre-B ALL, driven by human MYC.

Development of stress-induced bladder insufficiency requires functional TRPV1 channels.

Social stress causes profound urinary bladder dysfunction in children that often continues into adulthood. We discovered that the intensity and duration of social stress influences whether bladder dysfunction presents as overactivity or underactivity.

Voluntary urination control by brainstem neurons that relax the urethral sphincter

Voluntary urination ensures that waste is eliminated when safe and socially appropriate, even without a pressing urge. Uncontrolled urination, or incontinence, is a common problem with few treatment options. Normal urine release requires a small region in the brainstem known as Barrington's nucleus (Bar), but specific neurons that relax the urethral sphincter and enable urine flow are unknown. Here we identify a small subset of Bar neurons that control the urethral sphincter in mice.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com