RNAscope 2.5 HD Red assay

Naturally Acquired Canine Herpesvirus-Associated Meningoencephalitis.

Canid alphaherpesvirus 1 (CHV) causes morbidity and mortality in susceptible puppies. While the neuropathology of experimentally infected puppies has been detailed, characterization of naturally acquired infections is limited. The aim of this study was to describe the histologic, immunohistochemical, and in situ hybridization features of CHV encephalitis in the dog. Six female and 11 male puppies ranging in age from stillborn to 57 days old were included.

Gm7325 is MyoD-dependently expressed in activated muscle satellite cells.

The Gm7325 gene, bioinformatically identified in the mouse genome, encodes a small protein but has not been characterized until recently.

Cellular senescence drives age-dependent hepatic steatosis.

The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis.

Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism.

Cleidocranial dysplasia (CCD) is an autosomal dominant human disorder characterized by abnormal bone development that is mainly due to defective intramembranous bone formation by osteoblasts. Here, we describe a mouse strain lacking the E3 ubiquitin ligase RNF146 that shows phenotypic similarities to CCD. Loss of RNF146 stabilized its substrate AXIN1, leading to impairment of WNT3a-induced β-catenin activation and reduced Fgf18 expression in osteoblasts.

Disruption of the Axonal Trafficking of Tyrosine Hydroxylase mRNA Impairs Catecholamine Biosynthesis in the Axons of Sympathetic Neurons

Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated.

Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated.

Spatial transcriptional profile of PepT1 mRNA in the yolk sac and small intestine in broiler chickens.

The yolk sac and small intestine are 2 important organs responsible for the digestion and absorption of nutrients in chickens during the embryonic and posthatch periods, respectively. The peptide transporter PepT1 is expressed in both the yolk sac and small intestine and plays an important role in the transport of amino acids as short peptides.

Expression of host defense peptides in the intestine of Eimeria-challenged chickens.

Avian coccidiosis is caused by the intracellular protozoan Eimeria, which produces intestinal lesions leading to weight gain depression. Current control methods include vaccination and anticoccidial drugs. An alternative approach involves modulating the immune system. The objective of this study was to profile the expression of host defense peptides such as avian beta-defensins (AvBDs) and liver expressed antimicrobial peptide 2 (LEAP2), which are part of the innate immune system.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com