RNAscope 2.5 HD Red assay

Impaired glucose metabolism underlies articular cartilage degeneration in osteoarthritis

Osteoarthritis (OA) is the leading joint disease characterized by cartilage destruction and loss of mobility. Accumulating evidence indicates that the incidence and severity of OA increases with diabetes, implicating systemic glucose metabolism in joint health. However, a definitive link between cellular metabolism in articular cartilage and OA pathogenesis is not yet established. Here, we report that in mice surgically induced to develop knee OA through destabilization of medial meniscus (DMM), expression of the main glucose transporter Glut1 is notably reduced in joint cartilage.

DLEU1 promotes cell survival by preventing DYNLL1 degradation in esophageal squamous cell carcinoma

Emerging evidence has highlighted the critical roles of long noncoding RNAs (lncRNAs) in tumor development and progression. However, the biological functions and underlying mechanisms of DLEU1 in esophageal squamous cell carcinoma (ESCC) remain unclear.LncRNA expression in ESCC tissues was explored using lncRNA microarray datasets. The functional roles of DLEU1 in ESCC were demonstrated by a series of in vitro and in vivo experiments.

Development of a cost-effective ovine antibody-based therapy against SARS-CoV-2 infection and contribution of antibodies specific to the spike subunit proteins

Antibodies against SARS-CoV-2 are important to generate protective immunity, with convalescent plasma one of the first therapies approved. An alternative source of polyclonal antibodies suitable for upscaling would be more amendable to regulatory approval and widespread use. In this study, sheep were immunised with SARS-CoV-2 whole spike protein or one of the subunit proteins: S1 and S2. Once substantial antibody titres were generated, plasma was collected and samples pooled for each antigen.

LINC00152 Drives a Competing Endogenous RNA Network in Human Hepatocellular Carcinoma

Genomic and epigenomic studies revealed dysregulation of long non-coding RNAs in many cancer entities, including liver cancer. We identified an epigenetic mechanism leading to upregulation of the long intergenic non-coding RNA 152 (LINC00152) expression in human hepatocellular carcinoma (HCC). Here, we aimed to characterize a potential competing endogenous RNA (ceRNA) network, in which LINC00152 exerts oncogenic functions by sponging miRNAs, thereby affecting their target gene expression.

The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. In cell culture, CCHFV is sensed by the cytoplasmic RNA sensor retinoic acid-inducible gene I (RIG-I) molecule and its adaptor molecule mitochondrial antiviral signaling (MAVS) protein. MAVS initiates both type I interferon (IFN-I) and proinflammatory responses. Here, we studied the role MAVS plays in CCHFV infection in mice in both the presence and absence of IFN-I activity. MAVS-deficient mice were not susceptible to CCHFV infection when IFN-I signaling was active and showed no signs of disease.

CD4 T cells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection

HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas.

Endogenous Lipid-GPR120 Signaling Modulates Pancreatic Islet Homeostasis to Different Extents

Long-chain fatty acids (LCFAs) not only are energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets.

The role of intraspinal sensory neurons in the control of quadrupedal locomotion

From swimming to walking and flying, animals have evolved specific locomotor strategies to thrive in different habitats. All types of locomotion depend on the integration of motor commands and sensory information to generate precisely coordinated movements. Cerebrospinal-fluid-contacting neurons (CSF-cN) constitute a vertebrate sensory system that monitors CSF composition and flow. In fish, CSF-cN modulate swimming activity in response to changes in pH and bending of the spinal cord; however, their role in mammals remains unknown.

Tbx2 is a master regulator of inner versus outer hair cell differentiation

The cochlea uses two types of mechanosensory cell to detect sounds. A single row of inner hair cells (IHCs) synapse onto neurons to transmit sensory information to the brain, and three rows of outer hair cells (OHCs) selectively amplify auditory inputs1. So far, two transcription factors have been implicated in the specific differentiation of OHCs, whereas, to our knowledge, none has been identified in the differentiation of IHCs2-4.

Olfactory sensory experience regulates gliomagenesis via neuronal IGF1

Animals constantly receive various sensory stimuli, such as odours, sounds, light and touch, from the surrounding environment. These sensory inputs are essential for animals to search for food and avoid predators, but they also affect their physiological status, and may cause diseases such as cancer. Malignant gliomas-the most lethal form of brain tumour1-are known to intimately communicate with neurons at the cellular level2,3. However, it remains unclear whether external sensory stimuli can directly affect the development of malignant glioma under normal living conditions.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com