RNAscope 2.5 HD Red assay

Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque

Atherosclerotic plaques consist mostly of smooth muscle cells (SMCs), and genes that influence SMC phenotype can modulate coronary artery disease (CAD) risk. Allelic variation at 15q22.33 has been identified by genome-wide association studies to modify the risk of CAD and is associated with the expression of _SMAD3_ in SMCs. However, the mechanism by which this gene modifies CAD risk remains poorly understood. Here we show that SMC-specific deletion of _Smad3_ in a murine atherosclerosis model resulted in greater plaque burden, more outward remodeling and increased vascular calcification.

Fusobacterium nucleatum induces MDSCs enrichment via activation the NLRP3 inflammosome in ESCC cells, leading to cisplatin resistance

To analyse the regulatory effect of Fusobacterium nucleatum (Fn) on NOD-like receptor protein 3 (NLRP3) and myeloid-derived suppressor cells (MDSCs) in oesophageal squamous cell carcinoma (ESCC) as well as its effect on cisplatin (CDDP) therapy and to explore its clinical significance.Fn infection, NLRP3 expression and MDSCs infiltration in ESCC tissues were detected by RNAscope and immunohistochemistry (IHC). The correlation between these three factors and the clinicopathological features and survival of ESCC patients was analysed.

Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort

As the coronavirus disease 2019 (COVID-19) pandemic evolves, much evidence implicates the heart as a critical target of injury in patients. The mechanism(s) of cardiac involvement has not been fully elucidated, although evidence of direct virus-mediated injury, thromboembolism with ischemic complications, and cytokine storm has been reported. We examined suggested mechanisms of COVID-19-associated heart failure in 21 COVID-19-positive decedents, obtained through standard autopsy procedure, compared to clinically matched controls and patients with various etiologies of viral myocarditis.

Transcutaneous ultrasound mediated gene delivery into canine livers achieves therapeutic levels of FVIII expression

A safe, effective, and inclusive gene therapy will significantly benefit a large population of hemophilia patients. We employed a minimally invasive transcutaneous ultrasound mediated gene delivery (UMGD) strategy combined with microbubbles (MBs) to enhance gene transfer into four canine livers. A high-expressing, liver-specific human factor VIII (hFVIII) plasmid/MBs mixture was injected into the hepatic vein via balloon catheter under fluoroscopy guidance with simultaneous transcutaneous UMGD treatment targeting a specific liver lobe.

Combination therapy with remdesivir and monoclonal antibodies protects nonhuman primates against advanced Sudan virus disease

A major challenge in managing acute viral infections is ameliorating disease when treatment is delayed. Previously, we reported the success of a two-pronged monoclonal antibody (mAb) and antiviral remdesivir therapeutic approach to treat advanced illness in Marburg virus (MARV)-infected rhesus monkeys. Here, we explored the benefit of a similar combination therapy for Sudan ebolavirus (SUDV) infection.

Sine oculis homeobox homolog 1 (Six1) plays a critical role in pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. The role of the developmental transcription factor Sine Oculis homeobox homolog 1 (SIX1) in the pathophysiology of lung fibrosis is not known. IPF lung tissue samples and IPF-derived alveolar type II cells (AT2) showed a significant increase in SIX1 mRNA and protein levels, and the SIX1 transcriptional co-activators EYA1 and EYA2 were elevated.

A screen of repurposed drugs identifies AMHR2/MISR2 agonists as potential contraceptives

SignificanceThis study aims to identify drugs that activate the Mullerian inhibiting substance pathway to be used for contraception or other applications in women's health. We describe a high-throughput screening pipeline to identify small molecules that activate the Mullerian inhibiting substance type 2 receptor (MISR2) and validate their activity in bioassays. We identify five compounds from a repurposed drug library that specifically induce MISR2 signaling, trigger regression of the Mullerian duct, and inhibit follicle activation.

Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth

Lung cancer is a major contributor to cancer-related death worldwide. siRNA nanomedicines are powerful tools for cancer therapeutics. However, there are challenges to overcome to increase siRNA delivery to solid tumors, including penetration of nanoparticles into a complex microenvironment following systemic delivery while avoiding rapid clearance by the reticuloendothelial system, and limited siRNA release from endosomes once inside the cell.

Mucus concentration-dependent biophysical abnormalities unify submucosal gland and superficial airway dysfunction in cystic fibrosis

Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com