Basescope

Modulation of tissue resident memory T cells by glucocorticoids after acute cellular rejection in lung transplantation

Acute cellular rejection is common after lung transplantation and is associated with an increased risk of early chronic rejection. We present combined single-cell RNA and TCR sequencing on recipient-derived T cells obtained from the bronchoalveolar lavage of three lung transplant recipients with rejection and compare them with T cells obtained from the same patients after treatment of rejection with high-dose systemic glucocorticoids.

A critical role for DLK and LZK in axonal repair in the mammalian spinal cord

The limited ability for axonal repair after spinal cord injury underlies long-term functional impairment. DLK (MAP3K12) is an evolutionarily conserved MAP3K implicated in neuronal injury signaling from C. elegans to mammals. However, whether DLK or its close homologue LZK (MAP3K13) regulates axonal repair in the mammalian spinal cord remains unknown. Here we assess the role of endogenous DLK and LZK in the regeneration and compensatory sprouting of corticospinal tract (CST) axons in mice of both sexes with genetic analyses in a regeneration competent background provided by PTEN deletion.

Markers of cognitive resilience and a framework for investigating clinical heterogeneity in ALS†

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. Despite the unifying pathological hallmark of TDP-43 proteinopathy, ALS is clinically a highly heterogeneous disease, and little is known about the underlying mechanisms driving this phenotypic diversity. In a recent issue of The Journal of Pathology, Banerjee, Elliott et al use region-specific transcriptomic profiling in postmortem brains from a deeply phenotyped clinical cohort of ALS patients to detect molecular signatures differentiating cognitively affected and unaffected patients.

Leveraging single cell sequencing to unravel intra-tumour heterogeneity and tumour evolution in human cancers

Intra-tumour heterogeneity and tumour evolution are well-documented phenomena in human cancers. While the advent of next-generation sequencing technologies has facilitated the large-scale capture of genomic data, the field of single cell genomics is nascent but rapidly advancing and generating many new insights into the complex molecular mechanisms of tumour biology. In this review, we provide an overview of current single cell DNA sequencing technologies, exploring how recent methodological advancements have enumerated new insights into intra-tumour heterogeneity and tumour evolution.

Developmental, neurochemical, and behavioral analyses of ErbB4 Cyt-1 knockout mice

Neuregulins (NRGs) and their cognate neuronal receptor ERBB4, which is expressed in GABAergic and dopaminergic neurons, regulate numerous behaviors in rodents and have been identified as schizophrenia at-risk genes. ErbB4 transcripts are alternatively spliced to generate isoforms that either include (Cyt-1) or exclude (Cyt-2) exon 26, which encodes a cytoplasmic domain that imparts ErbB4 receptors the ability to signal via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway.

Long noncoding RNA BCRP3 stimulates VPS34 and autophagy activities to promote protein homeostasis and cell survival

Autophagy plays important roles in cell homeostasis and protein quality control. Long non-coding RNAs (lncRNAs) have been revealed as an emerging class of autophagy regulators, but the majority of them function in regulating the expression of autophagy-related genes. LncRNAs that directly act on the core autophagic proteins remain to be explored.Immunofluorescence staining and Western blotting were used to evaluate the function of BCRP3 in autophagy and aggrephagy.

The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression

The extracellular matrix (ECM) is a fundamental component of the tissue of multicellular organisms that is comprised of an intricate network of multidomain proteins and associated factors, collectively known as the matrisome. The ECM creates a biophysical environment that regulates essential cellular processes such as adhesion, proliferation and migration and impacts cell fate decisions. The composition of the ECM varies across organs, developmental stages and diseases.

Visualization of Defined Gene Sequences in Single Nuclei by DNA In Situ Hybridization (DISH)

Gains and/or losses of large genomic loci such as full or partial aneuploidies/aneusomies can be routinely identified in single cells using fluorescence in situ hybridization (FISH); however, standard FISH typically cannot resolve single genes or gene variations. Here we provide a protocol for DNA in situ hybridization (DISH) that is capable of identifying single gene loci and gene variants within the nucleus of single cells.

MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer

Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611.

Targeting Alternative Splicing for Therapeutic Interventions

Targeting of pre-mRNA splicing has yielded a rich variety of strategies for altering gene expression as a treatment for disease. The search for therapeutics that can modulate splicing has been dominated by antisense oligonucleotides (ASOs) and small molecule compounds, with each platform achieving remarkably effective results in the clinic. The success of RNA-targeting drugs has led to the exploration of new strategies to expand the repertoire of this type of therapeutic.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com