Basescope

Tissue-specific expression of insulin receptor isoforms in obesity/type 2 diabetes mouse models

The two insulin receptor (IR) isoforms IR-A and IR-B are responsible for the pleiotropic actions of insulin and insulin-like growth factors. Consequently, changes in IR isoform expression and in the bioavailability of their ligands will impact on IR-mediated functions. Although alteration of IR isoform expression has been linked to insulin resistance, knowledge of IR isoform expression and mechanisms underlying tissue/cell-type-specific changes in metabolic disease are lacking.

Circular RNAs in the Central Nervous System

Circular RNAs (circRNAs) are endogenous single-stranded RNAs characterized by covalently closed loop structures with neither 5′ to 3′ polarity nor poly(A) tails. They are generated most commonly from back-splicing of protein-coding exons. CircRNAs have a tissue-specific distribution and are evolutionarily conserved, and many circRNAs play important biological functions by combining with microRNAs and proteins to regulate protein functions and their own translation.

Fibroblast Growth Factor Receptor 2 Isoforms Detected via Novel RNA ISH as Predictive Biomarkers for Progestin Therapy in Atypical Hyperplasia and Low-Grade Endometrial Cancer

Women with atypical hyperplasia (AH) or well-differentiated early-stage endometrioid endometrial carcinoma (EEC) who wish to retain fertility and/or with comorbidities precluding surgery, are treated with progestin. Clinically approved predictive biomarkers for progestin therapy remain an unmet need. The objectives of this study were to document the overall response rate (ORR) of levonorgestrel intrauterine device (LNG-IUD) treatment, and determine the association of FGFR2b and FGFR2c expression with treatment outcome.

PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity

Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear.

RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways

Current therapeutic options for treating colorectal cancer have little clinical efficacy and acquired resistance during treatment is common, even following patient stratification. Understanding the mechanisms that promote therapy resistance may lead to the development of novel therapeutic options that complement existing treatments and improve patient outcome. Here, we identify RAC1B as an important mediator of colorectal tumourigenesis and a potential target for enhancing the efficacy of EGFR inhibitor treatment.

Enhanced detection of expanded repeat mRNA foci with hybridization chain reaction

Transcribed nucleotide repeat expansions form detectable RNA foci in patient cells that contribute to disease pathogenesis. The most widely used method for detecting RNA foci, fluorescence in situ hybridization (FISH), is powerful but can suffer from issues related to signal above background. Here we developed a repeat-specific form of hybridization chain reaction (R-HCR) as an alternative method for detection of repeat RNA foci in two neurodegenerative disorders: C9orf72 associated ALS and frontotemporal dementia (C9 ALS/FTD) and Fragile X-associated tremor/ataxia syndrome.

Identification of germ cell-specific Mga variant mRNA that promotes meiosis via impediment of a non-canonical PRC1

A non-canonical PRC1 (PRC1.6) prevents precocious meiotic onset. Germ cells alleviate its negative effect by reducing their amount of MAX, a component of PRC1.6, as a prerequisite for their bona fide meiosis. Here, we found that germ cells produced Mga variant mRNA bearing a premature termination codon (PTC) during meiosis as an additional mechanism to impede the function of PRC1.6. The variant mRNA encodes an anomalous MGA protein that lacks the bHLHZ domain and thus functions as a dominant negative regulator of PRC1.6.

IN SITU DETECTION OF CRTC-MAML2 TRANSLOCATION EXPRESSION IN MUCOEPIDERMOID CARCINOMA

Background The heterogeneity of salivary gland neoplasms, within and between histologic types, presents a major diagnostic challenge. Mucoepidermoid carcinoma (MEC), the most common salivary gland cancer in adults, children, and adolescents, is associated with the presence of a novel CRTC1-MAML2 fusion gene. The translocation can be detected by fluorescence in situ hybridization or reverse transcription polymerase chain reaction but without information regarding transcript level, identification of the cell type(s) harboring the translocation and histologic architecture is not preserved.

Circular RNA circ-TNPO3 suppresses metastasis of gastric cancer by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL

Gastric cancer (GC) continues to be the most common gastrointestinal malignancy in China, and tumor metastases are a major reason for poor prognosis. Circular RNAs (circRNAs) are an intriguing type of noncoding RNAs with important regulatory roles. However, the roles of circRNAs in GC metastasis have not been fully elucidated. Here, we reported that circ-TNPO3 was significantly downregulated in 103 pairs of GC tissues compared with matched noncancerous tissues.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com