Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search
  • Probes for (1571451)
  • Kits & Accessories (135)
  • Support & Documents (0)
  • Publications (7110)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (320919) Apply Mouse filter
  • Human (293611) Apply Human filter
  • Other (131299) Apply Other filter
  • Rat (63465) Apply Rat filter
  • Zebrafish (54667) Apply Zebrafish filter
  • Monkey (43709) Apply Monkey filter
  • Pig (17303) Apply Pig filter
  • Dog (16085) Apply Dog filter
  • Rabbit (8222) Apply Rabbit filter
  • Felis catus (7033) Apply Felis catus filter
  • Bovine (6266) Apply Bovine filter
  • Callithrix jacchus (5027) Apply Callithrix jacchus filter
  • Ovis aries (3328) Apply Ovis aries filter
  • Anolis carolinensis (3027) Apply Anolis carolinensis filter
  • Mesocricetus auratus (3019) Apply Mesocricetus auratus filter
  • Octopus bimaculoides (2731) Apply Octopus bimaculoides filter
  • Salmo salar (2711) Apply Salmo salar filter
  • Astyanax mexicanus (2665) Apply Astyanax mexicanus filter
  • Heterocephalus glaber (2596) Apply Heterocephalus glaber filter
  • Aedes aegypti (2427) Apply Aedes aegypti filter
  • Pogona vitticeps (2245) Apply Pogona vitticeps filter
  • Sorghum bicolor (1880) Apply Sorghum bicolor filter
  • Anopheles gambiae str. PEST (1759) Apply Anopheles gambiae str. PEST filter
  • Oryzias latipes (1746) Apply Oryzias latipes filter
  • Trichoplax adhaerens (1720) Apply Trichoplax adhaerens filter
  • Xenopus laevis (1534) Apply Xenopus laevis filter
  • Human papillomavirus (1523) Apply Human papillomavirus filter
  • Human herpesvirus (1465) Apply Human herpesvirus filter
  • Other virus (1461) Apply Other virus filter
  • Ixodes scapularis (1395) Apply Ixodes scapularis filter
  • Oncorhynchus mykiss (1393) Apply Oncorhynchus mykiss filter
  • Macaca nemestrina (1310) Apply Macaca nemestrina filter
  • Human immunodeficiency virus 1 (1303) Apply Human immunodeficiency virus 1 filter
  • Ginglymostoma cirratum (1163) Apply Ginglymostoma cirratum filter
  • Hepatitis B virus (1141) Apply Hepatitis B virus filter
  • Xenopus tropicalis (1138) Apply Xenopus tropicalis filter
  • Peromyscus maniculatus bairdii (1114) Apply Peromyscus maniculatus bairdii filter
  • Serinus canaria (1038) Apply Serinus canaria filter
  • Ictidomys tridecemlineatus (1028) Apply Ictidomys tridecemlineatus filter
  • Microtus ochrogaster (1024) Apply Microtus ochrogaster filter
  • Nothobranchius furzeri (1001) Apply Nothobranchius furzeri filter
  • synthetic construct (879) Apply synthetic construct filter
  • Gasterosteus aculeatus (818) Apply Gasterosteus aculeatus filter
  • Lonchura striata domestica (805) Apply Lonchura striata domestica filter
  • Hippocampus comes (768) Apply Hippocampus comes filter
  • Monodelphis domestica (694) Apply Monodelphis domestica filter
  • Rousettus aegyptiacus (639) Apply Rousettus aegyptiacus filter
  • Tupaia chinensis (617) Apply Tupaia chinensis filter
  • Anopheles gambiae (612) Apply Anopheles gambiae filter
  • Meriones unguiculatus (583) Apply Meriones unguiculatus filter

Gene

  • PPIB (2561) Apply PPIB filter
  • TBD (1462) Apply TBD filter
  • Bdnf (1374) Apply Bdnf filter
  • GAPDH (1320) Apply GAPDH filter
  • Htt (1318) Apply Htt filter
  • UBC (1313) Apply UBC filter
  • Slc17a6 (1162) Apply Slc17a6 filter
  • FOS (1149) Apply FOS filter
  • Gad1 (1096) Apply Gad1 filter
  • Il10 (1077) Apply Il10 filter
  • CD4 (1066) Apply CD4 filter
  • POLR2A (1063) Apply POLR2A filter
  • ESR1 (1025) Apply ESR1 filter
  • AR (989) Apply AR filter
  • Vegfa (885) Apply Vegfa filter
  • Tnf (884) Apply Tnf filter
  • Lgr5 (875) Apply Lgr5 filter
  • Oxtr (868) Apply Oxtr filter
  • Ifng (851) Apply Ifng filter
  • NTRK2 (846) Apply NTRK2 filter
  • Ace2 (835) Apply Ace2 filter
  • DRD2 (824) Apply DRD2 filter
  • TGFB1 (822) Apply TGFB1 filter
  • Slc17a7 (808) Apply Slc17a7 filter
  • Rbfox3 (806) Apply Rbfox3 filter
  • LEPR (804) Apply LEPR filter
  • Nrg1 (791) Apply Nrg1 filter
  • OPRM1 (786) Apply OPRM1 filter
  • GFAP (784) Apply GFAP filter
  • PDGFRA (774) Apply PDGFRA filter
  • IL6 (751) Apply IL6 filter
  • ACTB (745) Apply ACTB filter
  • Sox9 (745) Apply Sox9 filter
  • Chat (731) Apply Chat filter
  • DRD1 (730) Apply DRD1 filter
  • GLP1R (728) Apply GLP1R filter
  • NP (728) Apply NP filter
  • Cd8a (727) Apply Cd8a filter
  • PECAM1 (725) Apply PECAM1 filter
  • MAPT (723) Apply MAPT filter
  • COL1A1 (703) Apply COL1A1 filter
  • ACTA2 (701) Apply ACTA2 filter
  • CD3E (694) Apply CD3E filter
  • TRPA1 (688) Apply TRPA1 filter
  • CDKN1A (670) Apply CDKN1A filter
  • S (658) Apply S filter
  • Sst (650) Apply Sst filter
  • Piezo2 (643) Apply Piezo2 filter
  • 16SrRNA (638) Apply 16SrRNA filter
  • CD68 (615) Apply CD68 filter

Platform

  • Manual Assay RNAscope HiPlex (511449) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (128999) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (70981) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (36105) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay BaseScope (5508) Apply Manual Assay BaseScope filter
  • Manual Assay miRNAscope (5124) Apply Manual Assay miRNAscope filter
  • Automated Assay for Leica Systems - miRNAscope (4930) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (4611) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (4574) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (4077) Apply Automated Assay for Ventana Systems - miRNAscope filter
  • Manual Assay DNAscope (227) Apply Manual Assay DNAscope filter
  • Manual Assay 2.5 (9) Apply Manual Assay 2.5 filter
  • T3 (3) Apply T3 filter
  • T4 (3) Apply T4 filter
  • T8 (3) Apply T8 filter
  • T1 (3) Apply T1 filter
  • T10 (3) Apply T10 filter
  • Manual Assay HiPlex (2) Apply Manual Assay HiPlex filter
  • T2 (2) Apply T2 filter
  • T7 (2) Apply T7 filter
  • T9 (2) Apply T9 filter
  • Automated Assay for Leica Systems (LS 2.5) (1) Apply Automated Assay for Leica Systems (LS 2.5) filter
  • T5 (1) Apply T5 filter
  • T6 (1) Apply T6 filter
  • T11 (1) Apply T11 filter
  • T12 (1) Apply T12 filter

Channel

  • 1 (158789) Apply 1 filter
  • 2 (145194) Apply 2 filter
  • 3 (93691) Apply 3 filter
  • 4 (93473) Apply 4 filter
  • 6 (46553) Apply 6 filter
  • 5 (36684) Apply 5 filter
  • 8 (82) Apply 8 filter
  • 9 (76) Apply 9 filter
  • 7 (72) Apply 7 filter
  • 11 (67) Apply 11 filter
  • 10 (58) Apply 10 filter
  • 12 (50) Apply 12 filter

HiPlex Channel

  • T1 (85058) Apply T1 filter
  • T10 (85051) Apply T10 filter
  • T12 (85050) Apply T12 filter
  • T11 (85039) Apply T11 filter
  • T9 (82563) Apply T9 filter
  • T8 (82560) Apply T8 filter
  • T4 (82558) Apply T4 filter
  • T2 (82557) Apply T2 filter
  • T7 (82553) Apply T7 filter
  • T3 (82546) Apply T3 filter
  • T6 (82546) Apply T6 filter
  • T5 (82540) Apply T5 filter
  • S1 (32) Apply S1 filter
  • 8 (17) Apply 8 filter
  • 1 (1) Apply 1 filter
  • 10 (1) Apply 10 filter
  • 6 (1) Apply 6 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1035) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (998) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (732) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (704) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (293) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (193) Apply TBD filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (160) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (108) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (97) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (91) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (13) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (12) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1849) Apply Neuroscience filter
  • Cancer (1385) Apply Cancer filter
  • Development (509) Apply Development filter
  • Inflammation (472) Apply Inflammation filter
  • Infectious Disease (410) Apply Infectious Disease filter
  • Other (406) Apply Other filter
  • Stem Cells (258) Apply Stem Cells filter
  • Covid (237) Apply Covid filter
  • Infectious (220) Apply Infectious filter
  • HPV (187) Apply HPV filter
  • lncRNA (135) Apply lncRNA filter
  • Metabolism (91) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (78) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (67) Apply Other: Methods filter
  • HIV (64) Apply HIV filter
  • CGT (62) Apply CGT filter
  • Pain (62) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (46) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (40) Apply Other: Heart filter
  • Reproduction (38) Apply Reproduction filter
  • Endocrinology (34) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Kidney (27) Apply Kidney filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Other: Zoological Disease (20) Apply Other: Zoological Disease filter
  • Regeneration (20) Apply Regeneration filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Fibrosis (17) Apply Fibrosis filter
  • Other: Liver (17) Apply Other: Liver filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Skin (16) Apply Other: Skin filter
  • Injury (15) Apply Injury filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (256568) Apply Target Probes filter
  • Control Probe - Automated Leica (409) Apply Control Probe - Automated Leica filter
  • Control Probe - Automated Leica Multiplex (284) Apply Control Probe - Automated Leica Multiplex filter
  • Control Probe - Automated Leica Duplex (168) Apply Control Probe - Automated Leica Duplex filter
  • Control Probe- Manual RNAscope Multiplex (148) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe - Automated Ventana (143) Apply Control Probe - Automated Ventana filter
  • Control Probe - Manual RNAscope Singleplex (142) Apply Control Probe - Manual RNAscope Singleplex filter
  • Control Probe - Manual RNAscope Duplex (137) Apply Control Probe - Manual RNAscope Duplex filter
  • Control Probe (73) Apply Control Probe filter
  • Control Probe - Manual BaseScope Singleplex (51) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - VS BaseScope Singleplex (41) Apply Control Probe - VS BaseScope Singleplex filter
  • Control Probe - LS BaseScope Singleplex (40) Apply Control Probe - LS BaseScope Singleplex filter
  • L-HBsAG (15) Apply L-HBsAG filter
  • Cancer (13) Apply Cancer filter
  • Automated Assay 2.5: Leica System (8) Apply Automated Assay 2.5: Leica System filter
  • Control Probe- Manual BaseScope Duplex (8) Apply Control Probe- Manual BaseScope Duplex filter
  • 1765 (8) Apply 1765 filter
  • 1379 (8) Apply 1379 filter
  • 2184 (8) Apply 2184 filter
  • 38322 (8) Apply 38322 filter
  • Manual Assay 2.5: Pretreatment Reagents (5) Apply Manual Assay 2.5: Pretreatment Reagents filter
  • Controls: Manual Probes (5) Apply Controls: Manual Probes filter
  • Control Probe- Manual RNAscope HiPlex (5) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (4) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Duplex (4) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay RNAscope Multiplex (4) Apply Manual Assay RNAscope Multiplex filter
  • Manual Assay BaseScope Red (4) Apply Manual Assay BaseScope Red filter
  • IA: Other (4) Apply IA: Other filter
  • Control Probe - Manual BaseScope Duplex (4) Apply Control Probe - Manual BaseScope Duplex filter
  • Manual Assay miRNAscope Red (4) Apply Manual Assay miRNAscope Red filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • IA: Other Accessories (3) Apply IA: Other Accessories filter
  • Control Probe - Automated Ventana Duplex (3) Apply Control Probe - Automated Ventana Duplex filter
  • Manual Assay BaseScope Duplex (3) Apply Manual Assay BaseScope Duplex filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Controls: Control Slides (2) Apply Controls: Control Slides filter
  • Control Probe- Manual BaseScope Singleplex (2) Apply Control Probe- Manual BaseScope Singleplex filter
  • Control Probe - Manual BaseScope™Singleplex (2) Apply Control Probe - Manual BaseScope™Singleplex filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • Accessory Reagent (1) Apply Accessory Reagent filter
  • Controls: Manual RNAscope Multiplex (1) Apply Controls: Manual RNAscope Multiplex filter
  • IA: HybEZ (1) Apply IA: HybEZ filter
  • Automated Assay BaseScope: LS (1) Apply Automated Assay BaseScope: LS filter
  • Automated Assay BaseScope: VS (1) Apply Automated Assay BaseScope: VS filter
  • Software: RNAscope HiPlex Image Registration (1) Apply Software: RNAscope HiPlex Image Registration filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter
  • Automated Assay: VS (1) Apply Automated Assay: VS filter
  • Control Probe - VS BaseScope™Singleplex (1) Apply Control Probe - VS BaseScope™Singleplex filter
  • Controls:2.5VS Probes (1) Apply Controls:2.5VS Probes filter
  • Control Probe - Manual RNAscope Multiplex (1) Apply Control Probe - Manual RNAscope Multiplex filter

Sample Compatibility

  • Cell pellets (49) Apply Cell pellets filter
  • FFPE (41) Apply FFPE filter
  • Fixed frozen tissue (31) Apply Fixed frozen tissue filter
  • TMA (31) Apply TMA filter
  • Adherent cells (26) Apply Adherent cells filter
  • Freshfrozen tissue (18) Apply Freshfrozen tissue filter
  • Fresh frozen tissue (13) Apply Fresh frozen tissue filter
  • Cell Cultures (12) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (9) Apply TMA(Tissue Microarray) filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (7) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (4) Apply CTC filter
  • PBMC's (4) Apply PBMC's filter
  • Adherent or Cultured Cells (1) Apply Adherent or Cultured Cells filter
  • Fixed frozen (1) Apply Fixed frozen filter
  • FFPE,TMA (1) Apply FFPE,TMA filter
  • Fixed frozen tissues (for chromogenic assays) (1) Apply Fixed frozen tissues (for chromogenic assays) filter

Category

  • Publications (7110) Apply Publications filter

Application

  • Cancer (139875) Apply Cancer filter
  • Neuroscience (51010) Apply Neuroscience filter
  • Cancer, Neuroscience (32227) Apply Cancer, Neuroscience filter
  • Non-coding RNA (24365) Apply Non-coding RNA filter
  • Cancer, Inflammation (16436) Apply Cancer, Inflammation filter
  • Cancer, Inflammation, Neuroscience (12591) Apply Cancer, Inflammation, Neuroscience filter
  • Inflammation (9879) Apply Inflammation filter
  • Cancer, Stem Cell (7932) Apply Cancer, Stem Cell filter
  • Cancer, Neuroscience, Stem Cell (7028) Apply Cancer, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell (6854) Apply Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (5424) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Immunotherapy (5368) Apply Immunotherapy filter
  • Cancer, Immunotherapy (3866) Apply Cancer, Immunotherapy filter
  • Stem Cell (3385) Apply Stem Cell filter
  • Cancer, Immunotherapy, Neuroscience, Stem Cell (3050) Apply Cancer, Immunotherapy, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy, Inflammation (2844) Apply Cancer, Immunotherapy, Inflammation filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience (1878) Apply Cancer, Immunotherapy, Inflammation, Neuroscience filter
  • Cancer, Immunotherapy, Neuroscience (1786) Apply Cancer, Immunotherapy, Neuroscience filter
  • Inflammation, Neuroscience (1499) Apply Inflammation, Neuroscience filter
  • Cancer, Non-coding RNA (1142) Apply Cancer, Non-coding RNA filter
  • Cancer, Immunotherapy, Inflammation, Stem Cell (1021) Apply Cancer, Immunotherapy, Inflammation, Stem Cell filter
  • Cancer,Neuroscience (940) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation (777) Apply Cancer,Inflammation filter
  • Cancer, Inflammation, Stem Cell (594) Apply Cancer, Inflammation, Stem Cell filter
  • Immunotherapy, Inflammation (560) Apply Immunotherapy, Inflammation filter
  • Cancer,Inflammation,Neuroscience (424) Apply Cancer,Inflammation,Neuroscience filter
  • Cancer,Neuroscience,Stem Cell (317) Apply Cancer,Neuroscience,Stem Cell filter
  • Cancer, Immunotherapy, Stem Cell (295) Apply Cancer, Immunotherapy, Stem Cell filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (259) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Stem Cell (237) Apply Cancer,Stem Cell filter
  • Cancer, Neuroscience, Neuroscience (221) Apply Cancer, Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell (211) Apply Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Immunotherapy (206) Apply Cancer,Immunotherapy filter
  • Cancer,Immunotherapy,Inflammation (130) Apply Cancer,Immunotherapy,Inflammation filter
  • Neuroscience, Neuroscience (119) Apply Neuroscience, Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience (113) Apply Cancer,Immunotherapy,Neuroscience filter
  • L glycoprotein (112) Apply L glycoprotein filter
  • Immunotherapy, Neuroscience (99) Apply Immunotherapy, Neuroscience filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience (82) Apply Cancer,Immunotherapy,Inflammation,Neuroscience filter
  • Cancer,Immunotherapy,Neuroscience,Stem Cell (80) Apply Cancer,Immunotherapy,Neuroscience,Stem Cell filter
  • Immunotherapy,Inflammation (51) Apply Immunotherapy,Inflammation filter
  • Cancer,Non-coding RNA (48) Apply Cancer,Non-coding RNA filter
  • 4863 (41) Apply 4863 filter
  • Cancer, Neuroscience, Non-coding RNA (35) Apply Cancer, Neuroscience, Non-coding RNA filter
  • Inflammation,Neuroscience (33) Apply Inflammation,Neuroscience filter
  • HAdVC_gp16,HAdVCgp31 (32) Apply HAdVC_gp16,HAdVCgp31 filter
  • Cancer, Inflammation, Neuroscience, Non-coding RNA (31) Apply Cancer, Inflammation, Neuroscience, Non-coding RNA filter
  • Cancer,Immunotherapy,Inflammation,Stem Cell (30) Apply Cancer,Immunotherapy,Inflammation,Stem Cell filter
  • Inflammation, Non-coding RNA (30) Apply Inflammation, Non-coding RNA filter
  • Neuroscience, Non-coding RNA (29) Apply Neuroscience, Non-coding RNA filter
Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth

Proc Natl Acad Sci U S A.

2017 Nov 02

Spoljarica A, Sejaa P, Spoljaric I, Virtanen MA, Lindfors J, Uvarov P, Summanen M, Crow AK, Hsueh B, Puskarjov M, Ruusuvuori E, Voipio J, Deisseroth K, Kaila K.
PMID: 29183979 | DOI: 10.1073/pnas.1717337114

During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABAA receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth.

Differential activity of 2-methylene-19-nor vitamin D analogs on growth factor gene expression in rhino mouse skin and comparison to all-trans retinoic acid

PLoS One.

2017 Nov 28

Ahrens JM, Jones JD, Nieves NJ, Mitzey AM, DeLuca HF, Clagett-Dame M.
PMID: 29182680 | DOI: 10.1371/journal.pone.0188887

While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.

Oncogenic viruses in Skull Base Chordomas.

World Neurosurg.

2017 Nov 27

Yakkioui Y, Speel EM, Van Overbeeke JJ, Boderie MJM, Pujari S, Hausen AZ, Wolffs PFG, Temel Y.
PMID: 29191533 | DOI: 10.1016/j.wneu.2017.11.117

Abstract

BACKGROUND:

Chordomas are rare tumors assumed to derive from notochordal remnants. We believe that a molecular switch is responsible for their malignant behaviour. However, the involvement of oncogenic viruses has not been studied. Thus, in the present study we investigate the presence of oncogenic viruses in chordomas.

METHODS:

DNA and RNA from 18 snap-frozen chordomas and 15 chondrosarcomas were isolated. Real-time PCR or RT-PCR was performed to assess the presence of multiple oncogenic viruses, including herpesviridea (HSV1, HSV2,EBV, CMV, HHV6, HHV7 and KSHV), polyomaviridea (PVB19, BK, JC, SV40, MCPyV, HPyV6 and HPyV7), papillomaviridae and respiratory viruses. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to validate the positive results.

RESULTS:

PVB19 DNA was detected in 4/18 (22%) and in 1/15 (7%) of the chordomas and chondrosarcomas respectively. IHC recognizing the VP2 capsid protein of PVB19 showed a positive cytoplasmic staining in 44% (14/32) of the cases. HHV7 DNA was present in 6 out of 18 (33%) chordomas. Genomic DNA of EBV was found in 22% of samples. However, no positive result was found in the ISH. None of the chordoma cases showed any presence of DNA from the remaining viruses.

CONCLUSION:

Viral involvement in the etiology of chordomas is likely, with PVB19 being the most distinguishing.

Developmental Connectivity and Molecular Phenotypes of Unique Cortical Projection Neurons that Express a Synapse-Associated Receptor Tyrosine Kinase.

Cereb Cortex.

2017 Nov 28

Kast RJ, Wu HH, Levitt P.
PMID: 29190358 | DOI: 10.1093/cercor/bhx318

The complex circuitry and cell-type diversity of the cerebral cortex are required for its high-level functions. The mechanisms underlying the diversification of cortical neurons during prenatal development have received substantial attention, but understanding of neuronal heterogeneity is more limited during later periods of cortical circuit maturation. To address this knowledge gap, connectivity analysis and molecular phenotyping of cortical neuron subtypes that express the developing synapse-enriched MET receptor tyrosine kinase were performed. Experiments used a MetGFP transgenic mouse line, combined with coexpression analysis of class-specific molecular markers and retrograde connectivity mapping. The results reveal that MET is expressed by a minor subset of subcerebral and a larger number of intratelencephalic projection neurons. Remarkably, MET is excluded from most layer 6 corticothalamic neurons. These findings are particularly relevant for understanding the maturation of discrete cortical circuits, given converging evidence that MET influences dendritic elaboration and glutamatergic synapse maturation. The data suggest that classically defined cortical projection classes can be further subdivided based on molecular characteristics that likely influence synaptic maturation and circuit wiring. Additionally, given that MET is classified as a high confidence autism risk gene, the data suggest that projection neuron subpopulations may be differentially vulnerable to disorder-associated genetic variation.

Simultaneous Detection of Protein and mRNA in Jurkat and KG-1a Cells by Mass Cytometry.

Cytometry A.

2017 Nov 30

Mavropoulos A, Allo B, He M, Park E, Majonis D, Ornatsky O.
PMID: 29194963 | DOI: 10.1002/cyto.a.23281

Mass cytometry uniquely enables high-dimensional single-cell analysis of complex populations. This recently developed technology is based on inductively coupled time-of-flight mass spectrometry for multiplex proteomic analysis of more than 40 markers per cell. The ability to characterize the transcriptome is critical for the understanding of disease pathophysiology, medical diagnostics, and drug discovery. Current techniques allowing the in situ detection of transcripts in single cells are limited to a small number of simultaneous targets and are generally tedious and labor-intensive. In this report, we present the development of a multiplex method for targeted RNA detection by combining the mass cytometry and RNAscope™ platforms. This novel assay, called Metal In Situ Hybridization (MISH), includes the hybridization of RNA-specific target probes followed by signal amplification achieved through a cascade of hybridization events, ending with the binding of amplifier-specific detector probes. The detector probes are tagged with isotopically pure metal atoms used for detection by mass cytometry. Proof-of-principle experiments show the simultaneous detection of three mRNA targets in Jurkat cells in suspension cell assay mode. The localization of transcripts was also investigated using the imaging mass cytometry platform in Jurkat and KG-1a cells. In addition, we optimized the antibody staining procedure to allow the co-detection of mRNA and cell surface markers. Our data demonstrate that MISH can be used to complement protein detection by mass cytometry as well as to investigate gene transcription and translation in single cells.

Multiplex single-cell visualization of nucleic acids and protein during HIV infection

Nat Commun.

2017 Dec 01

Puray-Chavez M, Tedbury PR, Huber AD, Ukah OB, Yapo V, Liu D, Ji J, Wolf JJ, Engelman AN, Sarafianos SG.
PMID: 29192235 | DOI: 10.1038/s41467-017-01693-z

Technical limitations in simultaneous microscopic visualization of RNA, DNA, and proteins of HIV have curtailed progress in this field. To address this need we develop a microscopy approach, multiplex immunofluorescent cell-based detection of DNA, RNA and Protein (MICDDRP), which is based on branched DNA in situ hybridization technology. MICDDRP enables simultaneous single-cell visualization of HIV (a) spliced and unspliced RNA, (b) cytoplasmic and nuclear DNA, and (c) Gag. We use MICDDRP to visualize incoming capsid cores containing RNA and/or nascent DNA and follow reverse transcription kinetics. We also report transcriptional "bursts" of nascent RNA from integrated proviral DNA, and concomitant HIV-1, HIV-2 transcription in co-infected cells. MICDDRP can be used to simultaneously detect multiple viral nucleic acid intermediates, characterize the effects of host factors or drugs on steps of the HIV life cycle, or its reactivation from the latent state, thus facilitating the development of antivirals and latency reactivating agents.

Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer

Cell.

2017 Nov 30

Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG, Varvares MA, Mylvaganam R, Rozenblatt-Rosen O, Rocco JW, Faquin WC, Lin DT, Regev A, Bernstein BE.
PMID: 29198524 | DOI: 10.1016/j.cell.2017.10.044

The diverse malignant, stromal, and immune cells in tumors affect growth, metastasis, and response to therapy. We profiled transcriptomes of ∼6,000 single cells from 18 head and neck squamous cell carcinoma (HNSCC) patients, including five matched pairs of primary tumors and lymph node metastases. Stromal and immune cells had consistent expression programs across patients. Conversely, malignant cells varied within and between tumors in their expression of signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-to-mesenchymal transition (p-EMT). Cells expressing the p-EMT program spatially localized to the leading edge of primary tumors. By integrating single-cell transcriptomes with bulk expression profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal composition and established p-EMT as an independent predictor of nodal metastasis, grade, and adverse pathologic features. Our results provide insight into the HNSCC ecosystem and define stromal interactions and a p-EMT program associated with metastasis.

Myc Cooperates with Ras by Programming Inflammation and Immune Suppression

Cell.

2017 Nov 30

Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, Littlewood TD, Evan GI.
PMID: 29195074 | DOI: 10.1016/j.cell.2017.11.013

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.

The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues

PLoS Pathog.

2017 Nov 27

Xue XY, Majerciak V, Uberoi A, Kim BH, Gotte D, Chen X, Cam M, Lambert PF, Zheng ZM.
PMID: 29176795 | DOI: 10.1371/journal.ppat.1006715

Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5' RACE, 3' RACE, primer-walking RT-PCR, RNase protection, Northern blot and in situ hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P7503, P360 and P859 as "early" promoters because they give rise to transcripts mostly utilizing the polyadenylation signal at nt 3844 and therefore can only encode early genes, and P7107 and P533 as "late" promoters because they give rise to transcripts utilizing polyadenylation signals at either nt 3844 or nt 7047, the latter being able to encode late, capsid proteins. MmuPV1 genome contains five splice donor sites and three acceptor sites that produce thirty-six RNA isoforms deduced to express seven predicted early gene products (E6, E7, E1, E1^M1, E1^M2, E2 and E8^E2) and three predicted late gene products (E1^E4, L2 and L1). The majority of the viral early transcripts are spliced once from nt 757 to 3139, while viral late transcripts, which are predicted to encode L1, are spliced twice, first from nt 7243 to either nt 3139 (P7107) or nt 757 to 3139 (P533) and second from nt 3431 to nt 5372. Thirteen of these viral transcripts were detectable by Northern blot analysis, with the P533-derived late E1^E4 transcripts being the most abundant. The late transcripts could be detected in highly differentiated keratinocytes of MmuPV1-infected tissues as early as ten days after MmuPV1 inoculation and correlated with detection of L1 protein and viral DNA amplification. In mature warts, detection of L1 was also found in more poorly differentiated cells, as previously reported. Subclinical infections were also observed. The comprehensive transcription map of MmuPV1 generated in this study provides further evidence that MmuPV1 is similar to high-risk cutaneous beta human papillomaviruses. The knowledge revealed will facilitate the use of MmuPV1 as an animal virus model for understanding of human papillomavirus gene expression, pathogenesis and immunology.

GATA4 directly regulates Runx2 expression and osteoblast differentiation

Mol Endocrinol.

2017 Nov 29

Khalid AB, Slayden AV, Kumpati J, Perry CD, Osuna MAL, Arroyo SR, Miranda-Carboni GA, Krum SA.
PMID: 21566084 | DOI: 10.1210/me.2010-0463

Estrogens regulate osteoblast differentiation and mineralization. We identified GATA4 as a transcription factor expressed in osteoblasts and directly regulated by 17β-estradiol in this cell type but not in breast cancer cells, another estrogen-responsive tissue. Chromatin immunoprecipitation sequencing (chromatin immunoprecipitation sequencing) reveals that estrogen receptor α (ERα) binds to chromatin near GATA4 at five different enhancers. GATA4 and ERα are both recruited to ERα binding sites near genes that are specifically expressed in osteoblasts and control osteoblast differentiation. Maximal binding of GATA4 precedes ERα binding, and GATA4 is necessary for histone 3 lysine 4 dimethylation at ERα binding sites, suggesting that GATA4 is a pioneer factor for ERα. As such, knockdown of GATA4 reduced recruitment of ERα to DNA. Our study illustrates that GATA4 is a pioneer factor for ERα recruitment to osteoblast-specific enhancers.

p16 Immunohistochemistry in Oropharyngeal Squamous Cell Carcinoma Using the E6H4 Antibody Clone: A Technical Method Study for Optimal Dilution.

Head Neck Pathol.

2017 Nov 30

Lewis JS Jr, Shelton J, Kuhs KL, K Smith D.
PMID: 29190003 | DOI: 10.1007/s12105-017-0871-5

Routine testing for p16 immunohistochemistry (with selective HPV-specific test use) has been recommended for clinical practice in oropharyngeal squamous cell carcinoma (OPSCC). Data suggests that the E6H4 clone performs best for this purpose, yet no studies have evaluated the optimal antibody concentration for OPSCC testing. We evaluated three concentrations (undiluted, 1:5, and 1:10) of the primary antibody solution for E6H4 using tissue microarrays from a cohort of 199 OPSCC patients with a > 70% staining cutoff for positivity. Concordance was evaluated using percent agreement and Cohen's kappa. The concentrations were evaluated for sensitivity and specificity using high risk HPV RNA in situ hybridization (RNA-ISH) and also correlated with Kaplan-Meier overall survival analysis. Inter-rater agreement was very high between p16 results at each concentration and also with RNA in situ hybridization (p < 0.0001 for all). Agreement between p16 undiluted and 1:5 dilution (agreement 98.2%; Kappa 0.943; p < 0.0001) was very high and between p16 undiluted and 1:10 dilution (agreement 79.2%; Kappa 0.512; p < 0.0001) much lower. Intensity of the staining did decrease with the 1:5 and 1:10 dilutions compared to undiluted, but not in a manner that obviously would change test interpretation or performance. Results suggest that the E6H4 antibody performs well at dilutions of up to 1:5 fold with a minor decrease in staining intensity, minimum loss of sensitivity, and no loss of specificity in OPSCC patients. This could result in reagent and cost savings.

Cell-Type-Specific Splicing of Piezo2 Regulates Mechanotransduction.

Cell Rep.

2017 Dec 05

Szczot M, Pogorzala LA, Solinski HJ, Young L, Yee P, Le Pichon CE, Chesler AT, Hoon MA.
PMID: 29212024 | DOI: 10.1016/j.celrep.2017.11.035

Piezo2 is a mechanically activated ion channel required for touch discrimination, vibration detection, and proprioception. Here, we discovered that Piezo2 is extensively spliced, producing different Piezo2 isoforms with distinct properties. Sensory neurons from both mice and humans express a large repertoire of Piezo2 variants, whereas non-neuronal tissues express predominantly a single isoform. Notably, even within sensory ganglia, we demonstrate the splicing of Piezo2 to be cell type specific. Biophysical characterization revealed substantial differences in ion permeability, sensitivity to calcium modulation, and inactivation kinetics among Piezo2 splice variants. Together, our results describe, at the molecular level, a potential mechanism by which transduction is tuned, permitting the detection of a variety of mechanosensory stimuli.

Pages

  • « first
  • ‹ previous
  • …
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?