Sci Rep.
2017 Nov 22
Mogavero A, Maiorana MV, Zanutto S, Varinelli L, Bozzi F, Belfiore A, Volpi CC, Gloghini A, Pierotti MA, Gariboldi M.
PMID: - | DOI: 10.1038/s41598-017-16149-z
Metformin is a widely used and well-tolerated anti-diabetic drug that can reduce cancer risk and improve the prognosis of certain malignancies. However, the mechanism underlying its anti-cancer effect is still unclear. We studied the anti-cancer activity of metformin on colorectal cancer (CRC) by using the drug to treat HT29, HCT116 and HCT116 p53−/− CRC cells. Metformin reduced cell proliferation and migration by inducing cell cycle arrest in the G0/G1 phase. This was accompanied by a sharp decrease in the expression of c-Myc and down-regulation of IGF1R. The anti-proliferative action of metformin was mediated by two different mechanisms: AMPK activation and increase in the production of reactive oxygen species, which suppressed the mTOR pathway and its downstream targets S6 and 4EBP1. A reduction in CD44 and LGR5 expression suggested that the drug had an effect on tumour cells with stem characteristics. However, a colony formation assay showed that metformin slowed the cells’ ability to form colonies without arresting cell growth, as confirmed by absence of apoptosis, autophagy or senescence. Our finding that metformin only transiently arrests CRC cell growth suggests that efforts should be made to identify compounds that combined with the biguanide can act synergistically to induce cell death.
Oncotarget
2017 Oct 20
Horman SR, To J, Lamb J, Zoll JH, Leonetti N, Tu B, Moran R, Newlin R, Walker JR, Orth AP.
PMID: - | DOI: 10.18632/oncotarget.21915
Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo, murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.
ENEURO
2017 Nov 20
Mancarci BO, Toker L, Tripathy SJ, Li B, Rocco B, Sibille E, Pavlidis P.
PMID: - | DOI: 10.1523/ENEURO.0212-17.2017
Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across the mammalian brain using rigorously curated published data from pooled cell type microarray and single cell RNA-sequencing studies. We used these data to identify cell type-specific marker genes, discovering a substantial number of novel markers, many of which we validated using computational and experimental approaches. We further demonstrate that summarized expression of marker gene sets in bulk tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding resource, we provide a user-friendly web interface at Neuroexpresso.org.
Significance Statement Cell type markers are powerful tools in the study of the nervous system that help reveal properties of cell types and acquire additional information from large scale expression experiments. Despite their usefulness in the field, known marker genes for brain cell types are few in number. We present NeuroExpresso, a database of brain cell type specific gene expression profiles, and demonstrate the use of marker genes for acquiring cell type specific information from whole tissue expression. The database will prove itself as a useful resource for researchers aiming to reveal novel properties of the cell types and aid both laboratory and computational scientists to unravel the cell type specific components of brain disorders.
J Neurosci.
2017 Nov 22
Megat S, Shiers S, Moy JK, Barragan-Iglesias P, Pradhan G, Seal RP, Dussor G, Price TJ.
PMID: 29167404 | DOI: 10.1523/JNEUROSCI.2110-17.2017
Abstract
Dopaminergic modulation of spinal cord plasticity has long been recognized but circuits affected by this system and the precise receptor subtypes involved in this modulation have not been defined. Dopaminergic modulation from the A11 nucleus of the hypothalamus contributes to plasticity in a model of chronic pain called hyperalgesic priming. Here we tested the hypothesis that the key receptor subtype mediating this effect is the D5 receptor (D5R). We find that a spinally-directed lesion of dopaminergic neurons reverses hyperalgesic priming in both sexes and that a D1/D5 antagonist transiently inhibits neuropathic pain. We used mice lacking D5Rs (DRD5KO mice) to show that carrageenan, interleukin 6 (IL-6) as well as brain derived neurotrophic factor (BDNF)-induced hyperalgesia and priming is reduced specifically in male mice. These male DRD5KO mice also show reduced formalin pain responses and decreased heat pain. To characterize the subtypes of dorsal horn neurons engaged by dopamine signaling in the hyperalgesic priming model we used c-fos labeling. We find that a mixed D1/D5 agonist given spinally to primed mice activates a subset of neurons in lamina III and IV of the dorsal horn that co-express PAX2, a transcription factor for GABAergic interneurons. In line with this, we show that gabazine, a GABA-A receptor antagonist, is antihyperalgesic in primed mice exposed to spinal administration of a D1/D5 agonist. Therefore, the D5R, in males, and the D1R, in females, exert a powerful influence over spinal cord circuitry in pathological pain likely via modulation of deep dorsal horn GABAergic neurons.
SIGNIFICIANCE STATEMENT: Pain is the most prominent reason why people seek medical attention and chronic pain incidence world-wide has been estimated to be as high as 33%. This study provides new insight into how descending dopamine controls pathological pain states. Our work demonstrates that dopaminergic spinal projections are necessary for the maintenance of a chronic pain state in both sexes, however, D5 receptors seem to play a critical role in males while females rely more heavily on D1 receptors, an effect which could be explained by sexual dimorphisms in receptor expression levels. Collectively our work provides new insights into how the dopaminergic system interacts with spinal circuits to promote pain plasticity.
Cell Stem Cell
2017 Nov 22
Gadye L, Das D, Sanchez MA, Street K, Baudhuin A, Wagner A, Cole MB, Choi YG, Yosef N, Purdom E, Dudoit S, Risso D, Ngai J, Fletcher RB.
PMID: - | DOI: 10.1016/j.stem.2017.10.014
Tissue homeostasis and regeneration are mediated by programs of adult stem cell renewal and differentiation. However, the mechanisms that regulate stem cell fates under such widely varying conditions are not fully understood. Using single-cell techniques, we assessed the transcriptional changes associated with stem cell self-renewal and differentiation and followed the maturation of stem cell-derived clones using sparse lineage tracing in the regenerating mouse olfactory epithelium. Following injury, quiescent olfactory stem cells rapidly shift to activated, transient states unique to regeneration and tailored to meet the demands of injury-induced repair, including barrier formation and proliferation. Multiple cell fates, including renewed stem cells and committed differentiating progenitors, are specified during this early window of activation. We further show that Sox2 is essential for cells to transition from the activated to neuronal progenitor states. Our study highlights strategies for stem cell-mediated regeneration that may be conserved in other adult stem cell niches.
Redox Biology
2017 Nov 22
Rezende F, Moll F, Walter M, Helfinger V, Hahner F, Janetzko P, Ringel C, Weigert A, Fleming I, Weissmann N, Kuenne C, Looso M, Rieger MA, Nawroth P, Fleming T, Brandes RP, Schröder K.
PMID: - | DOI: 10.1016/j.redox.2017.11.014
Abstract
Aim
NADPH oxidases are important sources of reactive oxygen species (ROS). Several Nox homologues are present together in the vascular system but whether they exhibit crosstalk at the activity level is unknown. To address this, vessel function of knockout mice for the cytosolic Nox organizer proteins p47phox, NoxO1 and a p47phox-NoxO1-double knockout were studied under normal condition and during streptozotocin-induced diabetes.
Results
In the mouse aorta, mRNA expression for NoxO1 was predominant in smooth muscle and endothelial cells, whereas p47phox was markedly expressed in adventitial cells comprising leukocytes and tissue resident macrophages. Knockout of either NoxO1 or p47phox resulted in lower basal blood pressure. Deletion of any of the two subunits also prevented diabetes-induced vascular dysfunction. mRNA expression analysis by MACE (Massive Analysis of cDNA ends) identified substantial gene expression differences between the mouse lines and in response to diabetes. Deletion of p47phox induced inflammatory activation with increased markers of myeloid cells and cytokine and chemokine induction. In contrast, deletion of NoxO1 resulted in an attenuated interferon gamma signature and reduced expression of genes related to antigen presentation. This aspect was also reflected by a reduced number of circulating lymphocytes in NoxO1-/- mice.
Innovation & Conclusion
ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.
Gen Comp Endocrinol.
2017 Nov 17
Hausken KN, Marquis TJ, Sower SA.
PMID: 29157942 | DOI: 10.1016/j.ygcen.2017.11.006
All jawed vertebrates have three canonical glycoprotein hormones (GpHs: luteinizing hormone, LH; follicle stimulating hormone, FSH; and thyroid stimulating hormone, TSH) with three corresponding GpH receptors (GpH-Rs: LH-R, FSH-R and TSH-R). In contrast, we propose that the jawless vertebrate, sea lamprey (Petromyzon marinus), only has two pituitary glycoprotein hormones, lamprey (l)GpH and l-thyrostimulin, and two functional glycoprotein receptors, lGpH-R I and II. It is not known at this time whether there is a specific receptor for lGpH and l-thyrostimulin, or if both GpHs can differentially activate the lGpH-Rs. In this report, we determined the RNA expression of lGpH-R I and II in the gonads and thyroids of larval, parasitic phase, and adult lampreys. A highly sensitive dual-label fluorescent in situ hybridization technique (RNAScope™) showed lGpH-R I expression in the ovaries of larval lamprey, and co-localization and co-expression of lGpH-R I and II in the ovaries of parasitic phase and adult lampreys. Both receptors were also highly co-localized and co-expressed in the endostyle of larval lamprey and thyroid follicles of parasitic and adult lampreys. In addition, we performed in vivo studies to determine the actions of lamprey gonadotropin releasing hormones (lGnRHs) on lGpH-R I and II expression by real time PCR, and determined plasma concentrations of estradiol and thyroxine. Administration of lGnRH-III significantly (p≤ 0.01) increased lGpHR II expression in the thyroid follicles of adult female lampreys but did not cause a significant increase in RNA expression of lGpH-R I and II in ovaries. Concomitantly, there was a significant increase (p≤ 0.01) of plasma estradiol without any significant changes of plasma thyroxine concentrations in response to treatment to lGnRH-I, -II, or -III. In summary, our results provide supporting evidence that the lamprey pituitary hormones may differentially activate the lamprey GpH-Rs in regulating both thyroid and gonadal activities during each of the three life stages of the sea lamprey.
J Clin Invest.
2017 Nov 13
Wang S, Liang K, Hu Q, Li P, Song J, Yang Y, Yao J, Mangala LS, Li C, Yang W, Park PK, Hawke DH, Zhou J, Zhou Y, Xia W, Hung MC, Marks JR, Gallick GE, Lopez-Berestein G, Flores ER, Sood AK, Huang S, Yu D, Yang L, Lin C.
PMID: 29130936 | DOI: 10.1172/JCI91553
Conventional therapies for breast cancer brain metastases (BCBMs) have been largely ineffective because of chemoresistance and impermeability of the blood-brain barrier. A comprehensive understanding of the underlying mechanism that allows breast cancer cells to infiltrate the brain is necessary to circumvent treatment resistance of BCBMs. Here, we determined that expression of a long noncoding RNA (lncRNA) that we have named lncRNA associated with BCBM (Lnc-BM) is prognostic of the progression of brain metastasis in breast cancer patients. In preclinical murine models, elevated Lnc-BM expression drove BCBM, while depletion of Lnc-BM with nanoparticle-encapsulated siRNAs effectively treated BCBM. Lnc-BM increased JAK2 kinase activity to mediate oncostatin M- and IL-6-triggered STAT3 phosphorylation. In breast cancer cells, Lnc-BM promoted STAT3-dependent expression of ICAM1 and CCL2, which mediated vascular co-option and recruitment of macrophages in the brain, respectively. Recruited macrophages in turn produced oncostatin M and IL-6, thereby further activating the Lnc-BM/JAK2/STAT3 pathway and enhancing BCBM. Collectively, our results show that Lnc-BM and JAK2 promote BCBMs by mediating communication between breast cancer cells and the brain microenvironment. Moreover, these results suggest targeting Lnc-BM as a potential strategy for fighting this difficult disease.
Mol Cancer Ther.
2017 Oct 22
Chen G, Gao C, Gao X, Zhang DH, Kuan SF, Burns TF, Hu J.
PMID: 29167314 | DOI: 10.1158/1535-7163.MCT-17-0561
One of the most encouraging developments in oncology has been the success of BRAF inhibitors in BRAF-mutant melanoma. However, in contrast to its striking efficacy in BRAF-mutant melanomas, BRAF inhibitor monotherapy is ineffective in BRAF-mutant colorectal cancer (CRC). While many studies on BRAF inhibitor resistance in CRC have focused on mechanisms underlying the reactivation of the EGFR/RAS/RAF/MEK/ERK pathway, the current study focuses on identifying novel adaptive signaling mechanisms, a fresh angle on CRC resistance to BRAF inhibition. We found that treatment with BRAF inhibitors (both current and next generation BRAF inhibitors) upregulated the Wnt/β-catenin pathway in BRAFV600E-mutant CRC cell lines through activating the cytoplasmic tyrosine kinase FAK (focal adhesion kinase). The results showed that FAK activation upon BRAF inhibitor treatment did not require EGFR (Epidermal Growth Factor Receptor) or ERK1/2 (extracellular-signal-regulated kinases1/2) activation, implying that BRAF inhibitor treatment-induced hyperactivation of Wnt signaling is "pathway reactivation"-independent. BRAF inhibition-induced Wnt pathway activation was further validated in preclinical models of BRAFV600E-mutant CRC including cell line xenograft model and a PDX (patient-derived xenograft) model. Combined inhibition of BRAF/Wnt pathways or BRAF/FAK pathways exerted strong synergistic antitumor effects in cell culture model and mouse xenograft model. Overall, the current study has identified activation of the Wnt/β-catenin pathway as a novel fundamental cause of colon cancer resistance to BRAF inhibition. Our results suggest that while complete vertical pathway blockade is pivotal for effective and durable control of BRAF-mutant CRC, co-targeting parallel adaptive signaling-the Wnt/β-catenin pathway-is also essential.
Development.
2017 Nov 27
Sanz-Navarro M, Seidel K, Sun Z, Bertonnier-Brouty L, Amendt BA, Klein OD, Michon F.
PMID: 29180573 | DOI: 10.1242/dev.155929
In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signaling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate the heterogeneity of the Sox2+ population and reinforce its importance for incisor homeostasis.
Sci Rep.
2017 Nov 28
Kwon S, Chin K, Nederlof M, Gray JW.
PMID: 29184166 | DOI: 10.1038/s41598-017-16492-1
We describe here a method, termed immunoFISH, for simultaneous in situ analysis of the composition and distribution of proteins and individual RNA transcripts in single cells. Individual RNA molecules are labeled by hybridization and target proteins are concurrently stained using immunofluorescence. Multicolor fluorescence images are acquired and analyzed to determine the abundance, composition, and distribution of hybridized probes and immunofluorescence. We assessed the ability of immunoFISH to simultaneous quantify protein and transcript levels and distribution in cultured HER2 positive breast cancer cells and human breast tumor samples. We demonstrated the utility of this assay in several applications including demonstration of the existence of a layer of normal myoepithelial KRT14 expressing cells that separate HER2+ cancer cells from the stromal and immune microenvironment in HER2+ invasive breast cancer. Our studies show that immunoFISH provides quantitative information about the spatial heterogeneity in transcriptional and proteomic features that exist between and within cells.
Science.
2017 Nov 23
Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, Neuberg D, Huang K, Guevara F, Nelson T, Chipashvili O, Hagan T, Walker M, Ramachandran A, Diosdado B, Serna G, Mulet N, Landolfi S, Ramon Y Cajal S, Fasani R, Aguirre AJ, Ng K, Élez E, Ogino
PMID: 29170280 | DOI: 10.1126/science.aal5240
Colorectal cancers comprise a complex mixture of malignant cells, non-transformed cells and microorganisms. Fusobacterium nucleatum is among the most prevalent bacterial species in colorectal cancer tissues. Here we show that colonization of human colorectal cancers with Fusobacterium and its associated microbiome, including Bacteroides, Selenomonas and Prevotella species, is maintained in distal metastases, demonstrating microbiome stability between paired primary-metastatic tumors. In situ hybridization analysis revealed that Fusobacterium is predominantly associated with cancer cells in the metastatic lesions. Mouse xenografts of human primary colorectal adenocarcinomas were found to retain viable Fusobacterium and its associated microbiome through successive passages. Treatment of mice bearing a colon cancer xenograft with the antibiotic metronidazole reduced Fusobacterium load, cancer cell proliferation and overall tumor growth. These observations argue for further investigation of antimicrobial interventions as a potential treatment for patients with Fusobacterium-associated colorectal cancer.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com