Molecular Metabolism
2017 May 15
Rozo AV, Babu DA, Suen PA, Groff DN, Seeley RJ, Simmons RA, Seale P, Ahima RS, Stoffers DA.
PMID: - | DOI: 10.1016/j.molmet.2017.05.006
Adult obesity risk is influenced by alterations to fetal and neonatal environments. Modifying neonatal gut or neurohormone signaling pathways can have negative metabolic consequences in adulthood. Here we characterize the effect of neonatal activation of glucagon like peptide-1 (GLP-1) receptor (GLP1R) signaling on adult adiposity and metabolism.
Wild type C57BL/6 mice were injected with 1 nmol/kg Exendin-4 (Ex-4), a GLP1R agonist, for 6 consecutive days after birth. Growth, body composition, serum analysis, energy expenditure, food intake, and brain and fat pad histology and gene expression were assessed at multiple time points through 42 weeks. Similar analyses were conducted in a Glp1r conditional allele crossed with a Sim1Cre deleter strain to produce Sim1Cre;Glp1rloxP/loxP mice and control littermates.
Neonatal administration of Ex-4 reduced adult body weight and fat mass, increased energy expenditure, and conferred protection from diet-induced obesity in female mice. This was associated with induction of brown adipose genes and increased noradrenergic fiber density in parametrial white adipose tissue (WAT). We further observed durable alterations in orexigenic and anorexigenic projections to the paraventricular hypothalamic nucleus (PVH). Genetic deletion of Glp1r in the PVH by Sim1-Cre abrogated the impact of neonatal Ex-4 on adult body weight, WAT browning, and hypothalamic architecture.
These observations suggest that the acute activation of GLP1R in neonates durably alters hypothalamic architecture to limit adult weight gain and adiposity, identifying GLP1R as a therapeutic target for obesity prevention.
Nat Neurosci.
2017 May 22
Chen G, Kim YH, Li H, Luo H, Liu DL, Zhang ZJ, Lay M, Chang W, Zhang YQ, Ji RR.
PMID: 28530662 | DOI: 10.1038/nn.4571
Programmed cell death ligand-1 (PD-L1) is typically produced by cancer cells and suppresses immunity through the receptor PD-1 expressed on T cells. However, the role of PD-L1 and PD-1 in regulating pain and neuronal function is unclear. Here we report that both melanoma and normal neural tissues including dorsal root ganglion (DRG) produce PD-L1 that can potently inhibit acute and chronic pain. Intraplantar injection of PD-L1 evoked analgesia in naive mice via PD-1, whereas PD-L1 neutralization or PD-1 blockade induced mechanical allodynia. Mice lacking Pd1 (Pdcd1) exhibited thermal and mechanical hypersensitivity. PD-1 activation in DRG nociceptive neurons by PD-L1 induced phosphorylation of the tyrosine phosphatase SHP-1, inhibited sodium channels and caused hyperpolarization through activation of TREK2 K+channels. PD-L1 also potently suppressed nociceptive neuron excitability in human DRGs. Notably, blocking PD-L1 or PD-1 elicited spontaneous pain and allodynia in melanoma-bearing mice. Our findings identify a previously unrecognized role of PD-L1 as an endogenous pain inhibitor and a neuromodulator.
Nat Cell Biol.
2017 May 29
Hoeck JD, Biehs B, Kurtova AV, Kljavin NM, de Sousa E Melo F, Alicke B, Koeppen H, Modrusan Z, Piskol R, de Sauvage FJ.
PMID: 28553937 | DOI: 10.1038/ncb3535
Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5+(leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5+ cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34+ (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34+ cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5+ cells and inhibition of Wnt signalling prevents Lgr5+ cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.
Histopathology
2017 May 24
Prost S, Crossan CL, Dalton HR, De Man RA, Kamar N, Selves J, Dhaliwal C, Scobie L, Bellamy COC.
PMID: 28543644 | DOI: 10.1111/his.13266
Cellular and Molecular Gastroenterology and Hepatology
2017 May 31
Chuvin N, Vincent DF, Pommier RM, Alcaraz LB, Gout J, Caligaris C, Yacoub K, Cardot V, Roger E, Kaniewski B, Martel S, Cintas C, Goddard-Léon S, Colombe A, Valantin J, Gadot N, Servoz E, Morton J, Goddard I, Couvelard A, Rebours V, Guillermet J, Sansom OJ
PMID: - | DOI: 10.1016/j.jcmgh.2017.05.005
Transforming Growth Factor Beta (TGFβ) acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway, through its interaction with the serine/threonine kinase type I and II heterodimeric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression and its effects on acinar cells have so far remained elusive.
We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFβ receptor (TβRICA) in the pancreatic acinar compartment.
We observed that TβRICA expression induced Acinar-to-Ductal Metaplasia (ADM) reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous PanINs (Pancreatic Intraepithelial Neoplasia). This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, while at the molecular level, we evidenced a modulation in the expression of transcription factors, such as Hnf1β, Sox9 and Hes1.
We demonstrate that TGFβ pathway activation plays a crucial role in pancreatic tumor initiation, through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients.
eNeuro
2017 May 26
Armaz A, Anthony GE, Lijin D, Kaplan BB.
PMID: - | DOI: 10.1523/ENEURO.0385-16.2017
Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50bp sequence element in the 3′untranslated region (3’UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e. zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA sequences flanking the 50bp cis-acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine and norepinephrine. Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal norepinephrine levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH plays an important role in the synthesis of catecholamines in the axon and presynaptic terminal.
Significance Statement Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of the catecholamine neurotransmitters. Previous results suggested that TH mRNA is trafficked to the distal axons of primary sympathetic neurons and is locally translated. In the present study a gene editing strategy was employed to delete the axonal TH mRNA trafficking regulatory element (i.e. zip-code). Deletion of the zip-code reduced TH mRNA levels in the distal axons, reduced axonal protein levels of TH and diminished the axonal levels, and release of norepinephrine. Collectively, these studies demonstrate that the local synthesis of TH plays an important role in catecholamine synthesis and may facilitate the maintenance of catecholamine levels in response to long-term alteration in the need for neurotransmitters.
PLoS Pathog.
2017 May 19
Introini A, Boström S, Bradley F, Gibbs A, Glaessgen A, Tjernlund A, Broliden K.
PMID: 28542587 | DOI: 10.1371/journal.ppat.1006402
The most immediate and evident effect of mucosal exposure to semen in vivo is a local release of proinflammatory mediators accompanied by an influx of leukocytes into the female genital mucosa (FGM). The implication of such response in HIV-1 transmission has never been addressed due to limitations of currently available experimental models. Using human tissue explants from the uterine cervix, we developed a system of mucosal exposure to seminal plasma (SP) that supports HIV-1 replication. Treatment of ectocervical explants with SP resulted in the upregulation of inflammatory and growth factors, including IL-6, TNF, CCL5, CCL20, CXCL1, and CXCL8, and IL1A, CSF2, IL7, PTGS2, as evaluated by measuring protein levels in explant conditioned medium (ECM) and gene expression in tissue. SP treatment was also associated with increased recruitment of monocytes and neutrophils, as observed upon incubation of peripheral blood leukocytes with ECM in a transwell system. To evaluate the impact of the SP-mediated response on local susceptibility to HIV-1, we infected ectocervical explants with the CCR5-tropic variant HIV-1BaL either in the presence of SP, or after explant pre-incubation with SP. In both experimental settings SP enhanced virus replication as evaluated by HIV-1 p24gag released in explant culture medium over time, as well as by HIV-1 DNA quantification in explants infected in the presence of SP. These results suggest that a sustained inflammatory response elicited by SP soon after coitus may promote HIV-1 transmission to the FGM. Nevertheless, ectocervical tissue explants did not support the replication of transmitted/founder HIV-1 molecular clones, regardless of SP treatment. Our system offers experimental and analytical advantages over traditional models of HIV-1 transmission for the study of SP immunoregulatory effect on the FGM, and may provide a useful platform to ultimately identify new determinants of HIV-1 infection at this site.
Breast Cancer Res.
2017 May 30
Jiang Z, Slater CM, Zhou Y, Devarajan K, Ruth KJ, Li Y, Cai KQ, Daly M, Chen X.
PMID: 28558830 | DOI: 10.1186/s13058-017-0853-2
Nat Cell Biol.
2017 May 29
Yuan JH, Liu XN, Wang TT, Pan W, Tao QF, Zhou WP, Wang F, Sun SH.
PMID: 28553938 | DOI: 10.1038/ncb3538
Understanding the roles of splicing factors and splicing events during tumorigenesis would open new avenues for targeted therapies. Here we identify an oncofetal splicing factor, MBNL3, which promotes tumorigenesis and indicates poor prognosis of hepatocellular carcinoma patients. MBNL3 knockdown almost completely abolishes hepatocellular carcinoma tumorigenesis. Transcriptomic analysis revealed that MBNL3 induces lncRNA-PXN-AS1 exon 4 inclusion. The transcript lacking exon 4 binds to coding sequences of PXN mRNA, causes dissociation of translation elongation factors from PXN mRNA, and thereby inhibits PXN mRNA translation. In contrast, the transcript containing exon 4 preferentially binds to the 3' untranslated region of PXN mRNA, protects PXN mRNA from microRNA-24-AGO2 complex-induced degradation, and thereby increases PXN expression. Through inducing exon 4 inclusion, MBNL3 upregulates PXN, which mediates the pro-tumorigenic roles of MBNL3. Collectively, these data demonstrate detailed mechanistic links between an oncofetal splicing factor, a splicing event and tumorigenesis, and establish splicing factors and splicing events as potential therapeutic targets.
Nat Cell Biol.
2017 Jun 05
Leushacke M, Tan SH, Wong A, Swathi Y, Hajamohideen A, Tan LT, Goh J, Wong E, Denil SLIJ, Murakami K, Barker N.
PMID: 28581476 | DOI: 10.1038/ncb3541
The daily renewal of the corpus epithelium is fuelled by adult stem cells residing within tubular glands, but the identity of these stem cells remains controversial. Lgr5 marks homeostatic stem cells and 'reserve' stem cells in multiple tissues. Here, we report Lgr5 expression in a subpopulation of chief cells in mouse and human corpus glands. Using a non-variegated Lgr5-2A-CreERT2 mouse model, we show by lineage tracing that Lgr5-expressing chief cells do not behave as corpus stem cells during homeostasis, but are recruited to function as stem cells to effect epithelial renewal following injury by activating Wnt signalling. Ablation of Lgr5+ cells severely impairs epithelial homeostasis in the corpus, indicating an essential role for these Lgr5+ cells in maintaining the homeostatic stem cell pool. We additionally define Lgr5+ chief cells as a major cell-of-origin of gastric cancer. These findings reveal clinically relevant insights into homeostasis, repair and cancer in the corpus.
Sci Rep.
2017 Apr 21
Fu Y, Hou B, Weng C, Liu W, Dai J, Zhao C, Yin ZQ.
PMID: 28432360 | DOI: 10.1038/s41598-017-01261-x
Following retinal degeneration, retinal remodeling can cause neuronal microcircuits to undergo structural alterations, which particularly affect the dendrites of bipolar cells. However, the mechanisms and functional consequences of such changes remain unclear. Here, we used Royal College of Surgeon (RCS) rats as a model of retinal degeneration, to study structural changes in rod bipolar cells (RBCs) and the underlying mechanisms of these changes. We found that, with retinal degeneration, RBC dendrites extended into the outer nuclear layer (ONL) of the retina, and the ectopic dendrites formed synapses with the remaining photoreceptors. This ectopic neuritogenesis was associated with brain-derived neurotrophic factor (BDNF) - expression of which was negatively regulated by miR-125b-5p. Overexpression of miR-125b-5p in the retinae of RCS rats diminished RBC ectopic dendrites, and compromised the b-wave of the flash electroretinogram (ERG). In contrast, down-regulation of miR-125b-5p (or exogenous BDNF treatment) increased RBC ectopic dendrites, and improved b-wave. Furthermore, we showed that the regulation of ectopic neuritogenesis by BDNF occurred via the downstream modulation of the TrkB-CREB signaling pathway. Based on these findings, we conclude that ectopic dendrites are likely to be providing functional benefits and that, in RCS rats, miR-125b-5p regulates ectopic neuritogenesis by RBCs through modulation of the BDNF-TrkB-CREB pathway. This suggests that therapies that reduce miR-125b-5p expression could be beneficial in human retinal degenerative disease.
EMBO J.
2017 Jun 06
Aikawa S, Kano K, Inoue A, Wang J, Saigusa D, Nagamatsu T, Hirota Y, Fujii T, Tsuchiya S, Taketomi Y, Sugimoto Y, Murakami M, Arita M, Kurano M, Ikeda H, Yatomi Y, Chun J, Aoki J.
PMID: 28588064 | DOI: 10.15252/embj.201696290
During pregnancy, up-regulation of heparin-binding (HB-) EGF and cyclooxygenase-2 (COX-2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G-protein-coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA-producing enzyme autotaxin (ATX) in pregnant mice leads to HB-EGF and COX-2 down-regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up-regulation of HB-EGF and COX-2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre-implantation-stage embryos, respectively. Our results indicate that ATX-LPA-LPA3 signaling at the embryo-epithelial boundary induces decidualization via the canonical HB-EGF and COX-2 pathways.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com