Intranasal Administration of a Monoclonal Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
Halwe, S;Kupke, A;Vanshylla, K;Liberta, F;Gruell, H;Zehner, M;Rohde, C;Krähling, V;Gellhorn Serra, M;Kreer, C;Klüver, M;Sauerhering, L;Schmidt, J;Cai, Z;Han, F;Young, D;Yang, G;Widera, M;Koch, M;Werner, A;Kämper, L;Becker, N;Marlow, MS;Eickmann, M;Ciesek, S;Schiele, F;Klein, F;Becker, S;
PMID: 34452363 | DOI: 10.3390/v13081498
Despite the recent availability of vaccines against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there is an urgent need for specific anti-SARS-CoV-2 drugs. Monoclonal neutralizing antibodies are an important drug class in the global fight against the SARS-CoV-2 pandemic due to their ability to convey immediate protection and their potential to be used as both prophylactic and therapeutic drugs. Clinically used neutralizing antibodies against respiratory viruses are currently injected intravenously, which can lead to suboptimal pulmonary bioavailability and thus to a lower effectiveness. Here we describe DZIF-10c, a fully human monoclonal neutralizing antibody that binds the receptor-binding domain of the SARS-CoV-2 spike protein. DZIF-10c displays an exceptionally high neutralizing potency against SARS-CoV-2, retains full activity against the variant of concern (VOC) B.1.1.7 and still neutralizes the VOC B.1.351, although with reduced potency. Importantly, not only systemic but also intranasal application of DZIF-10c abolished the presence of infectious particles in the lungs of SARS-CoV-2 infected mice and mitigated lung pathology when administered prophylactically. Along with a favorable pharmacokinetic profile, these results highlight DZIF-10c as a novel human SARS-CoV-2 neutralizing antibody with high in vitro and in vivo antiviral potency. The successful intranasal application of DZIF-10c paves the way for clinical trials investigating topical delivery of anti-SARS-CoV-2 antibodies.
Loss of Foxc1 and Foxc2 function in chondroprogenitor cells disrupts endochondral ossification
The Journal of biological chemistry
Almubarak, A;Lavy, R;Srnic, N;Hu, Y;Maripuri, DP;Kume, T;Berry, FB;
PMID: 34331943 | DOI: 10.1016/j.jbc.2021.101020
Endochondral ossification initiates the growth of the majority of the mammalian skeleton and is tightly controlled through gene regulatory networks. The forkhead box transcription factors Foxc1 and Foxc2 have been demonstrated to regulate aspects of osteoblast function in the formation of the skeleton but their roles in chondrocytes to control endochondral ossification are less clear. Here we demonstrate that Foxc1 expression is directly regulated by the activity of SOX9, one of the earliest transcription factors to specify the chondrocyte lineage. Moreover, we demonstrate that elevated expression of Foxc1 promotes chondrocyte differentiation in mouse embryonic stem cells and loss of Foxc1 function inhibits chondrogenesis in vitro. Using chondrocyte-targeted deletion of Foxc1 and Foxc2 in mice, we reveal a role for these factors in chondrocyte differentiation in vivo. Loss of both Foxc1 and Foxc2 caused a general skeletal dysplasia predominantly affecting the vertebral column. The long bones of the limbs were smaller, mineralization was reduced, and organization of the growth plate was disrupted; in particular, the stacked columnar organization of the proliferative chondrocyte layer was reduced in size and cell proliferation in growth plate chondrocytes was reduced. Differential gene expression analysis indicated disrupted expression patterns of chondrogenesis and ossification genes throughout the entire process of endochondral ossification in chondrocyte-specific Foxc1/Foxc2 knockout embryos. Our results suggest that Foxc1 and Foxc2 are required for normal chondrocyte differentiation and function, as loss of both genes results in disorganization of the growth plate, reduced chondrocyte proliferation, and delays in chondrocyte hypertrophy that prevents ossification of the skeleton.
Gpr125 Marks Distinct Cochlear Cell Types and Is Dispensable for Cochlear Development and Hearing
Frontiers in cell and developmental biology
Sun, H;Wang, T;Atkinson, PJ;Billings, SE;Dong, W;Cheng, AG;
PMID: 34395423 | DOI: 10.3389/fcell.2021.690955
The G protein-coupled receptor (GPR) family critically regulates development and homeostasis of multiple organs. As a member of the GPR adhesion family, Gpr125 (Adgra3) modulates Wnt/PCP signaling and convergent extension in developing zebrafish, but whether it is essential for cochlear development in mammals is unknown. Here, we examined the Gpr125 lacZ/+ knock-in mice and show that Gpr125 is dynamically expressed in the developing and mature cochleae. From embryonic day (E) 15.5 to postnatal day (P) 30, Gpr125-β-Gal is consistently expressed in the lesser epithelial ridge and its presumed progenies, the supporting cell subtypes Claudius cells and Hensen's cells. In contrast, Gpr125-β-Gal is expressed transiently in outer hair cells, epithelial cells in the lateral cochlear wall, interdental cells, and spiral ganglion neurons in the late embryonic and early postnatal cochlea. In situ hybridization for Gpr125 mRNA confirmed Gpr125 expression and validated loss of expression in Gpr125 lacZ/lacZ cochleae. Lastly, Gpr125 lacZ/+ and Gpr125 lacZ/ lacZ cochleae displayed no detectable loss or disorganization of either sensory or non-sensory cells in the embryonic and postnatal ages and exhibited normal auditory physiology. Together, our study reveals that Gpr125 is dynamically expressed in multiple cell types in the developing and mature cochlea and is dispensable for cochlear development and hearing.
Cumulative Damage: Cell Death in Posthemorrhagic Hydrocephalus of Prematurity
Sevensky, R;Newville, JC;Tang, HL;Robinson, S;Jantzie, LL;
PMID: 34440681 | DOI: 10.3390/cells10081911
Globally, approximately 11% of all infants are born preterm, prior to 37 weeks' gestation. In these high-risk neonates, encephalopathy of prematurity (EoP) is a major cause of both morbidity and mortality, especially for neonates who are born very preterm (<32 weeks gestation). EoP encompasses numerous types of preterm birth-related brain abnormalities and injuries, and can culminate in a diverse array of neurodevelopmental impairments. Of note, posthemorrhagic hydrocephalus of prematurity (PHHP) can be conceptualized as a severe manifestation of EoP. PHHP impacts the immature neonatal brain at a crucial timepoint during neurodevelopment, and can result in permanent, detrimental consequences to not only cerebrospinal fluid (CSF) dynamics, but also to white and gray matter development. In this review, the relevant literature related to the diverse mechanisms of cell death in the setting of PHHP will be thoroughly discussed. Loss of the epithelial cells of the choroid plexus, ependymal cells and their motile cilia, and cellular structures within the glymphatic system are of particular interest. Greater insights into the injuries, initiating targets, and downstream signaling pathways involved in excess cell death shed light on promising areas for therapeutic intervention. This will bolster current efforts to prevent, mitigate, and reverse the consequential brain remodeling that occurs as a result of hydrocephalus and other components of EoP.
Rapid postmortem ventilation improves donor lung viability by extending the tolerable warm ischemic time after cardiac death in mice
American journal of physiology. Lung cellular and molecular physiology
Yu, J;Xu, C;Lee, JS;Alder, JK;Wen, Z;Wang, G;Gil Silva, AA;Sanchez, PG;Pilewsky, JM;McDyer, JF;Wang, X;
PMID: 34318693 | DOI: 10.1152/ajplung.00011.2021
Uncontrolled donation after cardiac death (uDCD) contributes little to ameliorating donor lung shortage due to rapidly progressive warm ischemia after circulatory arrest. Here, we demonstrated non-hypoxia improves donor lung viability in a novel uDCD lung transplant model undergoing rapid ventilation after cardiac death and compared the evolution of ischemia-reperfusion injury in mice that underwent pulmonary artery ligation (PAL). The tolerable warm ischemia time at 37ºC was initially determined in mice using a modified PAL model. The donor lung following PAL was also transplanted into syngeneic mice and compared to those that underwent rapid ventilation or no ventilation at 37ºC prior to transplantation. Twenty-four hours following reperfusion, lung histology, PaO2/FIO2 ratio, and inflammatory mediators were measured. Four hours of PAL had little impact on PaO2/FIO2 ratio and acute lung injury score in contrast to significant injury induced by 5 hours of PAL. Four-hour PAL lungs showed an early myeloid-dominant inflammatory signature when compared to naïve lungs and substantially injured five-hour PAL lungs. In the context of transplantation, unventilated donor lungs showed severe injury after reperfusion, whereas ventilated donor lungs showed minimal changes in PaO2/FIO2 ratio, histologic score, and expression of inflammatory markers. Taken together, the tolerable warm ischemia time of murine lungs at 37oC can be extended by maintaining alveolar ventilation for up to 4 hours. Non-hypoxic lung warm ischemia-reperfusion injury shows an early transcriptional signature of myeloid cell recruitment and extracellular matrix proteolysis prior to blood-gas barrier dysfunction and significant tissue damage.
Postmortem Cardiopulmonary Pathology in Patients with COVID-19 Infection: Single-Center Report of 12 Autopsies from Lausanne, Switzerland
Diagnostics (Basel, Switzerland)
Berezowska, S;Lefort, K;Ioannidou, K;Ndiaye, DR;Maison, D;Petrovas, C;Rotman, S;Piazzon, N;Milowich, D;Sala, N;Tsai, CY;Multone, E;Bochud, PY;Oddo, M;Bisig, B;de Leval, L;
PMID: 34441292 | DOI: 10.3390/diagnostics11081357
We report postmortem cardio-pulmonary findings including detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in formalin-fixed paraffin embedded tissue in 12 patients with COVID-19. The 5 women and 7 men (median age: 73 years; range 35-96) died 6-38 days after onset of symptoms (median: 14.5 days). Eight patients received mechanical ventilation. Ten patients showed diffuse alveolar damage (DAD), 7 as exudative and 3 as proliferative/organizing DAD. One case presented as acute fibrinous and organizing pneumonia. Seven patients (58%) had acute bronchopneumonia, 1/7 without associated DAD and 1/7 with aspergillosis and necrotic bronchitis. Microthrombi were present in 5 patients, only in exudative DAD. Reverse transcriptase quantitative PCR detected high virus amounts in 6 patients (50%) with exudative DAD and symptom-duration ≤14 days, supported by immunohistochemistry and in-situ RNA hybridization (RNAscope). The 6 patients with low viral copy levels were symptomatic for ≥15 days, comprising all cases with organizing DAD, the patient without DAD and one exudative DAD. We show the high prevalence of DAD as a reaction pattern in COVID-19, the high number of overlying acute bronchopneumonia, and high-level pulmonary virus detection limited to patients who died ≤2 weeks after onset of symptoms, correlating with exudative phase of DAD.
Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis
Gómez-Valadés, AG;Pozo, M;Varela, L;Boudjadja, MB;Ramírez, S;Chivite, I;Eyre, E;Haddad-Tóvolli, R;Obri, A;Milà-Guasch, M;Altirriba, J;Schneeberger, M;Imbernón, M;Garcia-Rendueles, AR;Gama-Perez, P;Rojo-Ruiz, J;Rácz, B;Alonso, MT;Gomis, R;Zorzano, A;D'Agostino, G;Alvarez, CV;Nogueiras, R;Garcia-Roves, PM;Horvath, TL;Claret, M;
PMID: 34343501 | DOI: 10.1016/j.cmet.2021.07.008
Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus represents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architecture and expression of the master cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons, which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology, mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (α-MSH) in target areas, hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological blockade of mitochondrial Ca2+ influx restores α-MSH and the lipolytic program, while improving the metabolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis control. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+ homeostasis, and WAT lipolysis in the regulation of energy balance.
Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional
Stancil, IT;Michalski, JE;Davis-Hall, D;Chu, HW;Park, JA;Magin, CM;Yang, IV;Smith, BJ;Dobrinskikh, E;Schwartz, DA;
PMID: 34315881 | DOI: 10.1038/s41467-021-24853-8
The airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.
Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries
Proceedings of the National Academy of Sciences of the United States of America
Le Rolle, M;Massa, F;Siggers, P;Turchi, L;Loubat, A;Koo, BK;Clevers, H;Greenfield, A;Schedl, A;Chaboissier, MC;Chassot, AA;
PMID: 34301885 | DOI: 10.1073/pnas.2023376118
Germ cells form the basis for sexual reproduction by producing gametes. In ovaries, primordial germ cells exit the cell cycle and the pluripotency-associated state, differentiate into oogonia, and initiate meiosis. Despite the importance of germ cell differentiation for sexual reproduction, signaling pathways regulating their fate remain largely unknown. Here, we show in mouse embryonic ovaries that germ cell-intrinsic β-catenin activity maintains pluripotency and that its repression is essential to allow differentiation and meiosis entry in a timely manner. Accordingly, in β-catenin loss-of-function and gain-of-function mouse models, the germ cells precociously enter meiosis or remain in the pluripotent state, respectively. We further show that interaction of β-catenin and the pluripotent-associated factor POU5F1 in the nucleus is associated with germ cell pluripotency. The exit of this complex from the nucleus correlates with germ cell differentiation, a process promoted by the up-regulation of Znrf3, a negative regulator of WNT/β-catenin signaling. Together, these data identify the molecular basis of the transition from primordial germ cells to oogonia and demonstrate that β-catenin is a central gatekeeper in ovarian differentiation and gametogenesis.
Complete representation of action space and value in all dorsal striatal pathways
Weglage, M;Wärnberg, E;Lazaridis, I;Calvigioni, D;Tzortzi, O;Meletis, K;
PMID: 34320355 | DOI: 10.1016/j.celrep.2021.109437
The dorsal striatum plays a central role in the selection, execution, and evaluation of actions. An emerging model attributes action selection to the matrix and evaluation to the striosome compartment. Here, we use large-scale cell-type-specific calcium imaging to determine the activity of striatal projection neurons (SPNs) during motor and decision behaviors in the three major outputs of the dorsomedial striatum: Oprm1+ striosome versus D1+ direct and A2A+ indirect pathway SPNs. We find that Oprm1+ SPNs show complex tunings to simple movements and value-guided actions, which are conserved across many sessions in a single task but remap between contexts. During decision making, the SPN tuning profiles form a complete representation in which sequential SPN activity jointly encodes task progress and value. We propose that the three major output pathways in the dorsomedial striatum share a similarly complete representation of the entire action space, including task- and phase-specific signals of action value and choice.
Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice
Acta pharmacologica Sinica
Zhang, HY;De Biase, L;Chandra, R;Shen, H;Liu, QR;Gardner, E;Lobo, MK;Xi, ZX;
PMID: 34316031 | DOI: 10.1038/s41401-021-00712-6
Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.
Evolution of a neuromuscular sexual dimorphism in the Drosophila montium species group
Liang, HQ;Katoh, T;Sato, K;Yamamoto, D;Wen, SY;
PMID: 34315982 | DOI: 10.1038/s41598-021-94722-3
While epigamic traits likely evolve via sexual selection, the mechanism whereby internal sexual dimorphism arises remains less well understood. Seeking clues as to how the internal sexual dimorphism evolved, we compared the abdominal musculature of 41 Drosophila montium group species, to determine whether any of these species carry a male-specific muscle of Lawrence (MOL). Our quantitative analysis revealed that the size of a sexually dimorphic MOL analog found in 19 montium group species varied widely from species to species, suggesting the gradual evolution of this sexually dimorphic neuromuscular trait. We attempted the ancestral state reconstitution for the presence or absence of the neuromuscular sexual dimorphism in the A5 segment; the neuromuscular sexual dimorphism existed in an old ancestor of the montium group, which was lost in some of the most recent common ancestors of derived lineages, and subsequently some species regained it. This loss-and-gain history was not shared by evolutionary changes in the courtship song pattern, even though both traits were commonly regulated by the master regulator male-determinant protein FruM. It is envisaged that different sets of FruM target genes may serve for shaping the song and MOL characteristics, respectively, and, as a consequence, each phenotypic trait underwent a distinct evolutionary path.