New Latency Reversing Agents for HIV-1 Cure: Insights from Nonhuman Primate Models
Bricker, KM;Chahroudi, A;Mavigner, M;
PMID: 34452425 | DOI: 10.3390/v13081560
Antiretroviral therapy (ART) controls human immunodeficiency virus 1 (HIV-1) replication and prevents disease progression but does not eradicate HIV-1. The persistence of a reservoir of latently infected cells represents the main barrier to a cure. "Shock and kill" is a promising strategy involving latency reversing agents (LRAs) to reactivate HIV-1 from latently infected cells, thus exposing the infected cells to killing by the immune system or clearance agents. Here, we review advances to the "shock and kill" strategy made through the nonhuman primate (NHP) model, highlighting recently identified latency reversing agents and approaches such as mimetics of the second mitochondrial activator of caspase (SMACm), experimental CD8+ T cell depletion, immune checkpoint blockade (ICI), and toll-like receptor (TLR) agonists. We also discuss the advantages and limits of the NHP model for HIV cure research and methods developed to evaluate the efficacy of in vivo treatment with LRAs in NHPs.
Endothelin receptors in renal interstitial cells do not contribute to the development of fibrosis during experimental kidney disease
Pflugers Archiv : European journal of physiology
Neder, TH;Schrankl, J;Fuchs, MAA;Broeker, KAE;Wagner, C;
PMID: 34355294 | DOI: 10.1007/s00424-021-02604-4
Renal interstitial fibrosis is characterized by the development of myofibroblasts, originating from resident renal and immigrating cells. Myofibroblast formation and extracellular matrix production during kidney damage are triggered by various factors. Among these, endothelins have been discussed as potential modulators of renal fibrosis. Utilizing mouse models of adenine nephropathy (AN) and unilateral ureter occlusion (UUO), this study aimed to investigate the contribution of endothelin signaling in stromal mesenchymal resident renal interstitial cells. We found in controls that adenine feeding and UUO caused marked upregulations of endothelin-1 (ET-1) gene expression in endothelial and in tubular cells and a strong upregulation of ETA-receptor (ETA-R) gene expression in interstitial and mesangial cells, while the gene expression of ETB-receptor (ETB-R) did not change. Conditional deletion of ETA-R and ETB-R gene expression in the FoxD1 stromal cell compartment which includes interstitial cells significantly reduced renal ETA-R gene expression and moderately lowered renal ETB-R gene expression. ET receptor (ET-R) deletion exerted no apparent effects on kidney development nor on kidney function. Adenine feeding and UUO led to similar increases in profibrotic and proinflammatory gene expression in control as well as in ETAflflETBflfl FoxD1Cre+ mice (ET-Ko). In summary, our findings suggest that adenine feeding and UUO activate endothelin signaling in interstitial cells which is due to upregulated ETA-R expression and enhanced renal ET-1 production Our data also suggest that the activation of endothelin signaling in interstitial cells has less impact for the development of experimentally induced fibrosis.
SPECIAL REPORT: A standardized definition of placental infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a consensus statement from the National Institutes of Health/Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIH/NICHD) SARS-CoV-2 placental infection workshop
American journal of obstetrics and gynecology
Roberts, DJ;Edlow, AG;Romero, RJ;Coyne, CB;Ting, DT;Hornick, JL;Zaki, SR;Adhikari, UD;Serghides, L;Gaw, SL;Metz, TD;all members of the NIH/NICHD SARS-CoV-2 Placental Infection Workshop, ;
PMID: 34364845 | DOI: 10.1016/j.ajog.2021.07.029
Pregnant individuals infected with SARS-CoV-2 have higher rates of ICU admission, oxygen requirement, need for mechanical ventilation and death than non-pregnant individuals. Increased COVID-19 disease severity may be associated with increased risk for viremia and placental infection. Maternal SARS-CoV-2 infection is also associated with pregnancy complications such as preeclampsia and preterm birth, that can be either placentally-mediated or reflected in the placenta. Maternal viremia followed by placental infection may lead to maternal-fetal transmission (vertical), which affects 1-3% of exposed newborns. However, there is no agreed-upon or standard definition of placental infection. NIH/NICHD convened a group of experts to propose a working definition of placental infection to inform ongoing studies of SARS-CoV-2 during pregnancy. Experts recommended that placental infection be defined using techniques that allow virus detection and localization in placental tissue by one or more of the following methods: in-situ hybridization with anti-sense probe (detects replication) and/or a sense probe (detects viral genome or immunohistochemistry to detect viral nucleocapsid (N) or spike (S) proteins. If the above methods are not possible, RT-PCR detection and/or quantification of viral RNA in placental homogenates, or electron microscopy are alternative approaches. A graded classification for the likelihood of placental infection as definitive, probable, possible, and unlikely was proposed. Manuscripts reporting placental infection should describe the sampling method (location and number of samples collected), method of preservation of tissue, and detection technique. Recommendations were made for the handling of the placenta, examination, and sampling, as well as the use of validated reagents and sample protocols (included as appendices).
Heat but not mechanical hypersensitivity depends on voltage-gated CaV2.2 calcium channel activity in peripheral axon terminals innervating skin
The Journal of neuroscience : the official journal of the Society for Neuroscience
DuBreuil, DM;Lopez Soto, EJ;Daste, S;Meir, R;Li, D;Wainger, BJ;Fleischmann, A;Lipscombe, D;
PMID: 34353899 | DOI: 10.1523/JNEUROSCI.0195-21.2021
Voltage-gated CaV2.2 calcium channels are expressed in nociceptors at presynaptic terminals, soma, and axons. CaV2.2 channel inhibitors applied to the spinal cord relieve pain in humans and rodents, especially during pathological pain, but a biological function of nociceptor CaV2.2 channels in processing of nociception, outside presynaptic terminals in the spinal cord, is underappreciated. Here, we demonstrate that functional CaV2.2 channels in peripheral axons innervating skin are required for capsaicin-induced heat hypersensitivity in male and female mice. We show that CaV2.2 channels in TRPV1-nociceptor endings are activated by capsaicin-induced depolarization and contribute to increased intracellular calcium. Capsaicin induces hypersensitivity of both thermal nociceptors and mechanoreceptors, but only heat hypersensitivity depends on peripheral CaV2.2 channel activity, and especially a cell type-specific CaV2.2 splice isoform. CaV2.2 channels at peripheral nerve endings might be important therapeutic targets to mitigate certain forms of chronic pain.SIGNIFICANCE STATEMENTIt is generally assumed that nociceptor termini in spinal cord dorsal horn are the functionally significant sites of CaV2.2 channel in control of transmitter release, and the transmission of sensory information from the periphery to central sites. We show that peripheral CaV2.2 channels are essential for the classic, heat hypersensitivity response to develop in skin following capsaicin exposure. This function of CaV2.2 is highly selective for heat, but not mechanical hypersensitivity induced by capsaicin exposure, and is not a property of closely related CaV2.1 channels. Our findings suggest that interrupting CaV2.2-dependent calcium entry in skin might reduce heat hypersensitivity that develops after noxious heat exposure, and may limit the degree of heat hypersensitivity associated with certain other forms of pain.
HIV in the Brain: Identifying Viral Reservoirs and Addressing the Challenges of an HIV Cure
Ash, MK;Al-Harthi, L;Schneider, JR;
PMID: 34451992 | DOI: 10.3390/vaccines9080867
Advances in antiretroviral therapy have prolonged the life of people living with HIV and diminished the level of virus in these individuals. Yet, HIV quickly rebounds after disruption and/or cessation of treatment due to significant cellular and anatomical reservoirs for HIV, which underscores the challenge for HIV cure strategies. The central nervous system (CNS), in particular, is seeded with HIV within 1-2 weeks of infection and is a reservoir for HIV. In this review, we address the paradigm of HIV reservoirs in the CNS and the relevant cell types, including astrocytes and microglia, that have been shown to harbor viral infection even with antiretroviral treatment. In particular, we focus on developmental aspects of astrocytes and microglia that lead to their susceptibility to infection, and how HIV infection propagates among these cells. We also address challenges of measuring the HIV latent reservoir, advances in viral detection assays, and how curative strategies have evolved in regard to the CNS reservoir. Current curative strategies still require optimization to reduce or eliminate the HIV CNS reservoir, and may also contribute to levels of neuroinflammation that lead to cognitive decline. With this in mind, the latent HIV reservoir in the brain should remain a prominent focus when assessing treatment options and overall viral burden in the clinic, especially in the context of HIV-associated neurocognitive disorders (HAND).
Evidence of disrupted rhombic lip development in the pathogenesis of Dandy-Walker malformation
Haldipur, P;Bernardo, S;Aldinger, KA;Sivakumar, T;Millman, J;Sjoboen, AH;Dang, D;Dubocanin, D;Deng, M;Timms, AE;Davis, BD;Plummer, JT;Mankad, K;Oztekin, O;Manganaro, L;Guimiot, F;Adle-Biassette, H;Russo, R;Siebert, JR;Kidron, D;Petrilli, G;Roux, N;Razavi, F;Glass, IA;Di Gioia, C;Silvestri, E;Millen, KJ;
PMID: 34347142 | DOI: 10.1007/s00401-021-02355-7
Dandy-Walker malformation (DWM) and Cerebellar vermis hypoplasia (CVH) are commonly recognized human cerebellar malformations diagnosed following ultrasound and antenatal or postnatal MRI. Specific radiological criteria are used to distinguish them, yet little is known about their differential developmental disease mechanisms. We acquired prenatal cases diagnosed as DWM and CVH and studied cerebellar morphobiometry followed by histological and immunohistochemical analyses. This was supplemented by laser capture microdissection and RNA-sequencing of the cerebellar rhombic lip, a transient progenitor zone, to assess the altered transcriptome of DWM vs control samples. Our radiological findings confirm that the cases studied fall within the accepted biometric range of DWM. Our histopathological analysis points to reduced foliation and inferior vermian hypoplasia as common features in all examined DWM cases. We also find that the rhombic lip, a dorsal stem cell zone that drives the growth and maintenance of the posterior vermis is specifically disrupted in DWM, with reduced proliferation and self-renewal of the progenitor pool, and altered vasculature, all confirmed by transcriptomics analysis. We propose a unified model for the developmental pathogenesis of DWM. We hypothesize that rhombic lip development is disrupted through either aberrant vascularization and/or direct insult which causes reduced proliferation and failed expansion of the rhombic lip progenitor pool leading to disproportionate hypoplasia and dysplasia of the inferior vermis. Timing of insult to the developing rhombic lip (before or after 14 PCW) dictates the extent of hypoplasia and distinguishes DWM from CVH.
Levels of circulating NS1 impact West Nile virus spread to the brain
Wessel, AW;Dowd, KA;Biering, SB;Zhang, P;Edeling, MA;Nelson, CA;Funk, KE;DeMaso, CR;Klein, RS;Smith, JL;Cao, TM;Kuhn, RJ;Fremont, DH;Harris, E;Pierson, TC;Diamond, MS;
PMID: 34346770 | DOI: 10.1128/JVI.00844-21
Dengue (DENV) and West Nile (WNV) viruses are arthropod-transmitted flaviviruses that respectively cause systemic vascular leakage and encephalitis syndromes in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity of the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. As exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcome. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here we assessed West Nile virus (WNV) NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in circulation facilitate WNV dissemination to the brain and disease outcome. Our findings help understand the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.
Prenatal androgen exposure alters KNDy neurons and their afferent network in a model of polycystic ovarian syndrome
Moore, AM;Lohr, DB;Coolen, LM;Lehman, MN;
PMID: 34346492 | DOI: 10.1210/endocr/bqab158
Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal two sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.
GATA3 maintains the quiescent state of cochlear supporting cells by regulating p27kip1
Xu, J;Yu, D;Dong, X;Xie, X;Xu, M;Guo, L;Huang, L;Tang, Q;Gan, L;
PMID: 34349220 | DOI: 10.1038/s41598-021-95427-3
Haplo-insufficiency of the GATA3 gene causes hypoparathyroidism, sensorineural hearing loss, and renal disease (HDR) syndrome. Previous studies have shown that Gata3 is required for the development of the prosensory domain and spiral ganglion neurons (SGNs) of the mouse cochlea during embryogenesis. However, its role in supporting cells (SCs) after cell fate specification is largely unknown. In this study, we used tamoxifen-inducible Sox2CreERT2 mice to delete Gata3 in SCs of the neonatal mouse cochlea and showed that loss of Gata3 resulted in the proliferation of SCs, including the inner pillar cells (IPCs), inner border cells (IBCs), and lateral greater epithelium ridge (GER). In addition, loss of Gata3 resulted in the down-regulation of p27kip1, a cell cycle inhibitor, in the SCs of Gata3-CKO neonatal cochleae. Chromatin immunoprecipitation analysis revealed that GATA3 directly binds to p27kip1 promoter and could maintain the quiescent state of cochlear SCs by regulating p27kip1 expression. Furthermore, RNA-seq analysis revealed that loss of Gata3 function resulted in the change in the expression of genes essential for the development and function of cochlear SCs, including Tectb, Cyp26b1, Slitrk6, Ano1, and Aqp4.
Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage
Fazilaty, H;Brügger, MD;Valenta, T;Szczerba, BM;Berkova, L;Doumpas, N;Hausmann, G;Scharl, M;Basler, K;
PMID: 34348153 | DOI: 10.1016/j.celrep.2021.109484
We lack a holistic understanding of the genetic programs orchestrating embryonic colon morphogenesis and governing damage response in the adult. A window into these programs is the transcriptomes of the epithelial and mesenchymal cell populations in the colon. Performing unbiased single-cell transcriptomic analyses of the developing mouse colon at different embryonic stages (embryonic day 14.5 [E14.5], E15.5, and E18.5), we capture cellular and molecular profiles of the stages before, during, and after the appearance of crypt structures, as well as in a model of adult colitis. The data suggest most adult lineages are established by E18.5. We find embryonic-specific gene expression profiles and cell populations that reappear in response to tissue damage. Comparison of the datasets from mice and human colitis suggests the processes are conserved. In this study, we provide a comprehensive single-cell atlas of the developing mouse colon and evidence for the reactivation of embryonic genes in disease.
Spatial Transcriptomics analysis of uterine gene expression in enhancer of Zeste homolog 2 (Ezh2) conditional knockout mice
Mesa, AM;Mao, J;Medrano, TI;Bivens, NJ;Jurkevich, A;Tuteja, G;Cooke, PS;Rosenfeld, CS;
PMID: 34344022 | DOI: 10.1093/biolre/ioab147
Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.
Detection of Human Papillomavirus Integration in Brain Metastases from Oropharyngeal Tumors by Targeted Sequencing
McEllin, B;Searle, BC;DePledge, L;Sun, G;Cobbs, C;Karimi, M;
PMID: 34452401 | DOI: 10.3390/v13081536
Human papillomavirus (HPV) positive and negative head and neck squamous cell carcinoma (HNSCC) are known to have differential phenotypes, including the incidence and location of metastases. HPV positive (HPV+) HNSCC are more likely to metastasize to distant sites, such as the lung, brain, and skin. Among these locations, metastasis to the brain is a rare event, and little is known about specific risk factors for this phenotype. In this report, we describe two patients who developed brain metastases from HNSCC. Both patient tumors had p16INK4a overexpression, suggesting these tumors were HPV+. This was confirmed after PCR, in situ hybridization, and mass spectrometry detected the presence of HPV type 16 (HPV16) DNA, RNA and protein. To further characterize the presence of HPV16, we used a target enrichment strategy on tumor DNA and RNA to isolate the viral sequences from the brain metastases. Analysis by targeted next generation sequencing revealed that both tumors had the HPV genome integrated into the host genome at known hotspots, 8q24.21 and 14q24.1. Applying a similar target enrichment strategy to a larger cohort of HPV+ HNSCC brain metastases could help to identify biomarkers that can predict metastasis and/or identify novel therapeutic options.