Clinical immunology (Orlando, Fla.)
De Greef, A;Coulie, PG;Baeck, M;
PMID: 35338000 | DOI: 10.1016/j.clim.2022.108984
The exact etiopathology of chilblains observed during the Coronavirus Disease 2019 (COVID-19) pandemic is still unclear. Initially, SARS-CoV-2 appeared as the obvious causing agent, but two years of various investigations have failed to convincingly support its direct implication. Most affected individuals have no detectable virus, no anti-SARS-CoV-2 antibodies and no symptoms of COVID-19. Analyses of skin biopsies similarly failed to unambiguously demonstrate presence of the virus or its genome. In a recent hypothesis, SARS-CoV-2 would cause the lesions before being promptly eliminated by unusually strong type I interferon responses. With others, we feel that environmental factors have not been sufficiently considered, in particular cold exposure related to unprecedented containment measures. The cause of pandemic chilblains remains a stimulating puzzle which warrants further investigation.
Bader, SM;Cooney, JP;Pellegrini, M;Doerflinger, M;
PMID: 35244141 | DOI: 10.1042/BCJ20210602
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
Killion, EA;Hussien, R;Shkumatov, A;Davies, R;Lloyd, DJ;Véniant, MM;Lebrec, H;Fort, MM;
PMID: 35224888 | DOI: 10.1111/andr.13166
Glucose-dependent insulinotropic polypeptide receptor (Gipr) gene expression has been reported in mouse spermatids and Gipr knockout male mice have previously been reported to have decreased in vitro fertilization, although the role of Gipr signaling in male mouse fertility is not well understood.The purposes of these studies were to determine the role of glucose-dependent insulinotropic polypeptide receptor in male fertility using Gipr knockout mice and anti-glucose-dependent insulinotropic polypeptide receptor antibody-treated wild-type mice and to determine if the expression of Gipr in mouse testes is similar in non-human and human primates.Adiponectin promoter-driven Gipr knockout male mice (GiprAdipo-/- ) were assessed for in vitro and in vivo fertility, sperm parameters, and testicular histology. CD1 male mice were administered an anti-glucose-dependent insulinotropic polypeptide receptor antibody (muGIPR-Ab) prior to and during mating for assessment of in vivo fertility and sperm parameters. Expression of Gipr/GIPR mRNA in the mouse, cynomolgus monkey, and human testes was assessed by in situ hybridization methods using species-specific probes.GiprAdipo-/- male mice are infertile in vitro and in vivo, despite normal testis morphology, sperm counts, and sperm motility. In contrast, administration of muGIPR-Ab to CD1 male mice did not impact fertility. While Gipr mRNA expression is detectable in the mouse testes, GIPR mRNA expression is not detectable in monkey or human testes.The infertility of GiprAdipo-/- male mice correlated with the lack of Gipr expression in the testis and/or adipocyte tissue. However, as administration of muGIPR-Ab did not impact the fertility of adult male mice, it is possible that the observations in genetically deficient male mice are related to Gipr deficiency during development.Our data support a role for Gipr expression in the mouse testis during the development of sperm fertilization potential, but based on gene expression data, a similar role for glucose-dependent insulinotropic polypeptide receptor in non-human primate or human male fertility is unlikely.
Rose, EC;Tse, TY;Oates, AW;Jackson, K;Pfeiffer, S;Donahoe, SL;Setyo, L;Barrs, VR;Beatty, JA;Pesavento, PA;
PMID: 35336972 | DOI: 10.3390/v14030566
Felis catus gammaherpesvirus-1 (FcaGHV1), a novel candidate oncogenic virus, infects cats worldwide. Whether the oropharynx is a site of virus shedding and persistence, and whether oronasal carcinomas harbor FcaGHV1 nucleic acid were investigated. In a prospective molecular epidemiological study, FcaGHV1 DNA was detected by cPCR in oropharyngeal swabs from 26/155 (16.8%) of cats. Oropharyngeal shedding was less frequently detected in kittens ≤3 months of age (5/94, 5.3%) than in older animals; >3 months to ≤1 year: 8/26, 30.8%, (p = 0.001, OR 7.91, 95% CI (2.320, 26.979)); >1 year to ≤6 years: 10/20, 50%, (p < 0.001, OR 17.8 95% CI (5.065, 62.557)); >6 years: 3/15, 33% (p = 0.078). Provenance (shelter-owned/privately owned) was not associated with shedding. In situ hybridization (ISH) identified FcaGHV1-infected cells in salivary glandular epithelium but not in other oronasal tissues from two of three cats shedding viral DNA in the oropharynx. In a retrospective dataset of 11 oronasopharyngeal carcinomas, a single tumor tested positive for FcaGHV1 DNA by ISH, a papillary carcinoma, where scattered neoplastic cells showed discrete nuclear hybridization. These data support the oronasopharynx as a site of FcaGHV1 shedding, particularly after maternal antibodies are expected to decline. The salivary epithelium is identified as a potential site of FcaGHV1 persistence. No evidence supporting a role for FcaGHV1 in feline oronasal carcinomas was found in the examined tumours.
Bustamante-Jaramillo, LF;Fingal, J;Blondot, ML;Rydell, GE;Kann, M;
PMID: 35336964 | DOI: 10.3390/v14030557
Hepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles. Regardless of infections leading to extreme viral loads, which may reach 1010 virions per mL serum, hepatitis B viruses are of low abundance and productivity in individual cells. Imaging of the infections in cells is thus a particular challenge especially for cccDNA that exists only in a few copies. The review describes the significance of microscopical approaches on genome and transcript detection for understanding hepatitis B virus infections, implications for understanding treatment outcomes, and recent microscopical approaches, which have not been applied in HBV research.
Carossino, M;Kenney, D;O'Connell, AK;Montanaro, P;Tseng, AE;Gertje, HP;Grosz, KA;Ericsson, M;Huber, BR;Kurnick, SA;Subramaniam, S;Kirkland, TA;Walker, JR;Francis, KP;Klose, AD;Paragas, N;Bosmann, M;Saeed, M;Balasuriya, UBR;Douam, F;Crossland, NA;
PMID: 35336942 | DOI: 10.3390/v14030535
Animal models recapitulating COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Intranasally inoculated transgenic mice expressing human angiotensin-converting enzyme 2 under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. We evaluated the clinical and virological dynamics of SARS-CoV-2 using two intranasal doses (104 and 106 PFUs), with a detailed spatiotemporal pathologic analysis of the 106 dose cohort. Despite generally mild-to-moderate pneumonia, clinical decline resulting in euthanasia or death was commonly associated with hypothermia and viral neurodissemination independent of inoculation dose. Neuroinvasion was first observed at 4 days post-infection, initially restricted to the olfactory bulb suggesting axonal transport via the olfactory neuroepithelium as the earliest portal of entry. Absence of viremia suggests neuroinvasion occurs independently of transport across the blood-brain barrier. SARS-CoV-2 tropism was neither restricted to ACE2-expressing cells (e.g., AT1 pneumocytes), nor inclusive of some ACE2-positive cell lineages (e.g., bronchiolar epithelium and brain vasculature). Absence of detectable ACE2 protein expression in neurons but overexpression in neuroepithelium suggest this as the most likely portal of neuroinvasion, with subsequent ACE2 independent lethal neurodissemination. A paucity of epidemiological data and contradicting evidence for neuroinvasion and neurodissemination in humans call into question the translational relevance of this model.
Pimpinella, S;Sauve, I;Dietrich, S;Zampieri, N;
PMID: 35306143 | DOI: 10.1016/j.neuroscience.2022.03.011
Somatosensory neurons detect vital information about the environment and internal status of the body, such as temperature, touch, itch, and proprioception. The circuit mechanisms controlling the coding of somatosensory information and the generation of appropriate behavioral responses are not clear yet. In order to address this issue, it is important to define the precise connectivity patterns between primary sensory afferents dedicated to the detection of different stimuli and recipient neurons in the central nervous system. In this study we describe and validate a rabies tracing approach for mapping mouse spinal circuits receiving sensory input from distinct, genetically defined, modalities. We analyzed the anatomical organization of spinal circuits involved in coding of thermal and mechanical stimuli and showed that somatosensory information from distinct modalities is relayed to partially overlapping ensembles of interneurons displaying stereotyped laminar organization, thus highlighting the importance of positional features and population coding for the processing and integration of somatosensory information.
Biochemical and Biophysical Research Communications
Krueger, L;Morris, A;
| DOI: 10.1016/j.bbrc.2022.03.103
Advances in CRISPR-Cas9 genome editing technology have strengthened the role of zebrafish as a model organism for genetics and developmental biology. These tools have led to a significant increase in the production of loss-of-function mutant zebrafish lines. However, the generation of precisely edited knock-in lines has remained a significant challenge in the field due to the decreased efficiency of homology directed repair (HDR). In this study, we overcame some of these challenges by combining available design tools and synthetic, commercially available CRISPR reagents to generate a knock-in line carrying an in-frame MYC epitope tag at the sox11a locus. Zebrafish Sox11a is a transcription factor with critical roles in organogenesis, neurogenesis, craniofacial, and skeletal development; however, only a few direct molecular targets of Sox11a have been identified. Here, we evaluate the knock-in efficiency of various HDR donor configurations and demonstrate the successful expression and localization of the resulting knock-in allele. Our results provide an efficient, streamlined approach to knock-in experiments in zebrafish, which will enable expansion of downstream experimental applications that have previously been difficult to perform. Moreover, the MYC-Sox11a line we have generated will allow further investigation into the function and direct targets of Sox11a.
Pathogens (Basel, Switzerland)
Magalhães, AC;Ricardo, S;Moreira, AC;Nunes, M;Tavares, M;Pinto, RJ;Gomes, MS;Pereira, L;
PMID: 35335638 | DOI: 10.3390/pathogens11030313
The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening.
Journal of neuroimmunology
Britt, NM;Poston, MD;Garbe, CG;Miller, MK;Peeters, LD;Wills, LJ;Schweitzer, JB;Brown, RW;Hoover, DB;
PMID: 35306300 | DOI: 10.1016/j.jneuroim.2022.577846
Our primary goal was to determine if leukocytes are a source of nerve growth factor (NGF) in mouse spleen. Noradrenergic nerves were localized to arteries and white pulp in normal spleens but only to arteries in ultra-immunodeficient R2G2 mice that lack leukocytes. NGF mRNA was detected in vascular cells and leukocytes of normal spleen, and several of the latter were T cells based on double labeling for NGF mRNA and CD3. Our findings indicate NGF is produced by vascular cells and to a lesser extent by leukocytes in spleen and provide support for pleiotropic actions in spleen and salivary glands.
Kroeger, M;Temeeyasen, G;Piñeyro, P;
| DOI: 10.1016/j.virusres.2022.198764
Porcine circovirus type 3 (PCV3) is a non-enveloped, circular, single-stranded DNA virus in the family Circoviridae. This member of the genus Circovirus was initially described as affecting swine in 2016, and new research has provided further insight into its structural characteristics, disease presentations, pathogenesis, and immune response following infection. Therefore, this review aims to summarize advances in PCV3-related research about genomic characteristics epidemiology, pathogenesis, immune response, and the development of diagnostics. PCV3 has been detected globally and retrospectively in pigs of all ages and is associated with a range of clinical presentations, including multisystemic inflammatory syndrome, reproductive failure, porcine dermatitis and nephropathy syndrome, and subclinical infection. Experimental studies have successfully reproduced multisystemic inflammation but have not detected clinical disease. These findings, coupled with a large number of reports of coinfections coinciding with PCV3, may suggest that PCV3 infection alone may not be sufficient to cause evidenceable clinical disease. The pathogenesis of PCV3 has not been fully elucidated yet, and while receptors that facilitate cell-viral entry have not been identified, replication has been confirmed in a wide range of cell types, including trophoblasts, myocardiocytes, skin adipocytes, and neurons. PCV3 seems to evade the host immune response as evidenced by persistent viremia 42 days post-infection in experimental and longitudinal field studies despite a strong humoral response. Minimal differences in host cytokine profiles and peripheral cell-mediated responses have been observed, but certainly many questions still surround the mechanisms by which PCV3 evades the immune response. The epidemiology of PCV3 remains unclear, and the exact routes of transmission have not been described; but, PCV3 can be shed in oral fluids, nasal secretions, feces, colostrum, and semen, demonstrating the importance of lateral and vertical transmission. The detection of PCV3 in numerous domesticated and wild animal species, including cattle, dogs, mice, wild boar, chamois, roe deer, ticks, and mosquitoes, suggests the potential for multiple reservoirs and cross-species transmission. Current advances in PCV3 diagnostic tests have the ability to differentiate PCV3 from other PCVs and corroborate its presence within lesions. Given that the economic impact associated with PCV3 infection has not been assessed and the virus has the potential to emerge as a high-prevalence pathogen in the coming years, future research should focus on filling the knowledge gaps identified in this review.
Liu, H;Wang, X;
PMID: 35220882 | DOI: 10.1080/21655979.2022.2037380
Adipose-derived mesenchymal stem cells (ADSCs) are a class of pluripotent stem cells isolated from the adipose tissue; they can differentiate into osteoblasts after induction and play an important role in bone repair. EGFL6 protein is secreted by adipocytes and osteoblasts and can promote endothelial cell migration and angiogenesis. This study aimed to explore the effect of recombinant EGFL6 protein on the osteogenic differentiation of ADSCs. The cells were incubated with fluorescein isothiocyanate-conjugated antibodies and analyzed by flow cytometry. Alizarin red staining and alkaline phosphatase staining were used to detect the osteogenic differentiation ability. mRNA expression was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Protein expression was determined using Western blotting. The osteogenic differentiation ability of ADSCs isolated from the adipose tissue was significantly weakened after EGFL6 knockdown; this ability was restored upon the addition of EGFL6 recombinant protein. BMP2 knockdown inhibited the effect of EGFL6 recombinant protein on osteogenic differentiation. EGFL6 recombinant protein promoted osteogenic differentiation of ADSCs through the BMP2/SMAD4 signaling pathway. This may provide a potential target for the osteogenic differentiation of ADSCs.