The journals of gerontology. Series A, Biological sciences and medical sciences
Mei, H;Boom, J;El Abdellaoui, S;Abdelmohsen, K;Munk, R;Martindale, JL;Kloet, S;Kielbasa, SM;Sharp, TH;Gorospe, M;Raz, V;
PMID: 35245938 | DOI: 10.1093/gerona/glac058
Aging-associated muscle wasting is regulated by multiple molecular processes, whereby aberrant mRNA processing regulation induces muscle wasting. The poly(A)-binding protein nuclear 1 (PABPN1) regulates polyadenylation site (PAS) utilization, in the absence of PABPN1 the alternative PAS (APA) is utilized. Reduced PABPN1 levels induce muscle wasting where the expression of cellular processes regulating protein homeostasis, the ubiquitin-proteasome system, and translation, are robustly dysregulated. Translation is impacted by mRNA levels, but PABPN1 impact on translation is not fully understood. Here we show that a persistent reduction in PABPN1 levels led to a significant loss of translation efficiency. RNA sequencing of rRNA-depleted libraries from polysome traces revealed reduced mRNA abundance across ribosomal fractions, as well as reduced levels of small RNAs. We show that the abundance of translated mRNAs in the polysomes correlated with PAS switches at the 3'-UTR. Those mRNAs are enriched in cellular processes that are essential for proper muscle function. This study suggests that the effect of PABPN1 on translation efficiency impacts protein homeostasis in aging-associated muscle atrophy.
Gertler, TS;Cherian, S;DeKeyser, JM;Kearney, JA;George, AL;
PMID: 35346832 | DOI: 10.1016/j.nbd.2022.105713
KCNT1 encodes the sodium-activated potassium channel KNa1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, but how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the KNa1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that KNa1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.
Downs, AM;Donsante, Y;Jinnah, HA;Hess, EJ;
PMID: 35314320 | DOI: 10.1016/j.nbd.2022.105699
Trihexyphenidyl (THP), a non-selective muscarinic receptor (mAChR) antagonist, is commonly used for the treatment of dystonia associated with TOR1A, otherwise known as DYT1 dystonia. A better understanding of the mechanism of action of THP is a critical step in the development of better therapeutics with fewer side effects. We previously found that THP normalizes the deficit in striatal dopamine (DA) release in a mouse model of TOR1A dystonia (Tor1a+/ΔE knockin (KI) mice), revealing a plausible mechanism of action for this compound, considering that abnormal DA neurotransmission is consistently associated with many forms of dystonia. However, the mAChR subtype(s) that mediate the rescue of striatal dopamine release remain unclear. In this study we used a combination of pharmacological challenges and cell-type specific mAChR conditional knockout mice of either sex to determine which mAChR subtypes mediate the DA release-enhancing effects of THP. We determined that THP acts in part at M4 mAChR on striatal cholinergic interneurons to enhance DA release in both Tor1a+/+ and Tor1a+/ΔE KI mice. Further, we found that the subtype selective M4 antagonist VU6021625 recapitulates the effects of THP. These data implicate a principal role for M4 mAChR located on striatal cholinergic interneurons in the mechanism of action of THP and suggest that subtype selective M4 mAChR antagonists may be effective therapeutics with fewer side effects than THP for the treatment of TOR1A dystonia.
International journal of molecular sciences
Raslan, AA;Oh, YJ;Jin, YR;Yoon, JK;
PMID: 35328508 | DOI: 10.3390/ijms23063089
The lungs have a remarkable ability to regenerate damaged tissues caused by acute injury. Many lung diseases, especially chronic lung diseases, are associated with a reduced or disrupted regeneration potential of the lungs. Therefore, understanding the underlying mechanisms of the regenerative capacity of the lungs offers the potential to identify novel therapeutic targets for these diseases. R-spondin2, a co-activator of WNT/β-catenin signaling, plays an important role in embryonic murine lung development. However, the role of Rspo2 in adult lung homeostasis and regeneration remains unknown. The aim of this study is to determine Rspo2 function in distal lung stem/progenitor cells and adult lung regeneration. In this study, we found that robust Rspo2 expression was detected in different epithelial cells, including airway club cells and alveolar type 2 (AT2) cells in the adult lungs. However, Rspo2 expression significantly decreased during the first week after naphthalene-induced airway injury and was restored by day 14 post-injury. In ex vivo 3D organoid culture, recombinant RSPO2 promoted the colony formation and differentiation of both club and AT2 cells through the activation of canonical WNT signaling. In contrast, Rspo2 ablation in club and AT2 cells significantly disrupted their expansion capacity in the ex vivo 3D organoid culture. Furthermore, mice lacking Rspo2 showed significant defects in airway regeneration after naphthalene-induced injury. Our results strongly suggest that RSPO2 plays a key role in the adult lung epithelial stem/progenitor cells during homeostasis and regeneration, and therefore, it may be a potential therapeutic target for chronic lung diseases with reduced regenerative capability.
International journal of molecular sciences
Bielmeier, CB;Schmitt, SI;Kleefeldt, N;Boneva, SK;Schlecht, A;Vallon, M;Tamm, ER;Hillenkamp, J;Ergün, S;Neueder, A;Braunger, BM;
PMID: 35269767 | DOI: 10.3390/ijms23052626
Transforming growth factor β (TGFβ) signaling has manifold functions such as regulation of cell growth, differentiation, migration, and apoptosis. Moreover, there is increasing evidence that it also acts in a neuroprotective manner. We recently showed that TGFβ receptor type 2 (Tgfbr2) is upregulated in retinal neurons and Müller cells during retinal degeneration. In this study we investigated if this upregulation of TGFβ signaling would have functional consequences in protecting retinal neurons. To this end, we analyzed the impact of TGFβ signaling on photoreceptor viability using mice with cell type-specific deletion of Tgfbr2 in retinal neurons and Müller cells (Tgfbr2ΔOC) in combination with a genetic model of photoreceptor degeneration (VPP). We examined retinal morphology and the degree of photoreceptor degeneration, as well as alterations of the retinal transcriptome. In summary, retinal morphology was not altered due to TGFβ signaling deficiency. In contrast, VPP-induced photoreceptor degeneration was drastically exacerbated in double mutant mice (Tgfbr2ΔOC; VPP) by induction of pro-apoptotic genes and dysregulation of the MAP kinase pathway. Therefore, TGFβ signaling in retinal neurons and Müller cells exhibits a neuroprotective effect and might pose promising therapeutic options to attenuate photoreceptor degeneration in humans.
International journal of molecular sciences
Helweg, LP;Windmöller, BA;Burghardt, L;Storm, J;Förster, C;Wethkamp, N;Wilkens, L;Kaltschmidt, B;Banz-Jansen, C;Kaltschmidt, C;
PMID: 35269569 | DOI: 10.3390/ijms23052426
Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.
International journal of molecular sciences
Leite, APO;Li, XC;Nwia, SM;Hassan, R;Zhuo, JL;
PMID: 35269547 | DOI: 10.3390/ijms23052402
Contrary to public perception, hypertension remains one of the most important public health problems in the United States, affecting 46% of adults with increased risk for heart attack, stroke, and kidney diseases. The mechanisms underlying poorly controlled hypertension remain incompletely understood. Recent development in the Cre/LoxP approach to study gain or loss of function of a particular gene has significantly helped advance our new insights into the role of proximal tubule angiotensin II (Ang II) and its AT1 (AT1a) receptors in basal blood pressure control and the development of Ang II-induced hypertension. This novel approach has provided us and others with an important tool to generate novel mouse models with proximal tubule-specific loss (deletion) or gain of the function (overexpression). The objective of this invited review article is to review and discuss recent findings using novel genetically modifying proximal tubule-specific mouse models. These new studies have consistently demonstrated that deletion of AT1 (AT1a) receptors or its direct downstream target Na+/H+ exchanger 3 (NHE3) selectively in the proximal tubules of the kidney lowers basal blood pressure, increases the pressure-natriuresis response, and induces natriuretic responses, whereas overexpression of an intracellular Ang II fusion protein or AT1 (AT1a) receptors selectively in the proximal tubules increases proximal tubule Na+ reabsorption, impairs the pressure-natriuresis response, and elevates blood pressure. Furthermore, the development of Ang II-induced hypertension by systemic Ang II infusion or by proximal tubule-specific overexpression of an intracellular Ang II fusion protein was attenuated in mutant mice with proximal tubule-specific deletion of AT1 (AT1a) receptors or NHE3. Thus, these recent studies provide evidence for and new insights into the important roles of intratubular Ang II via AT1 (AT1a) receptors and NHE3 in the proximal tubules in maintaining basal blood pressure homeostasis and the development of Ang II-induced hypertension.
International journal of molecular sciences
Ackermann, K;Wallner, S;Brochhausen, C;Schreml, S;
PMID: 34199609 | DOI: 10.3390/ijms22116024
The acid-sensing ion channels ASIC1 and ASIC2, as well as the transient receptor potential vanilloid channels TRPV1 and TRPV4, are proton-gated cation channels that can be activated by low extracellular pH (pHe), which is a hallmark of the tumor microenvironment in solid tumors. However, the role of these channels in the development of skin tumors is still unclear. In this study, we investigated the expression profiles of ASIC1, ASIC2, TRPV1 and TRPV4 in malignant melanoma (MM), squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and in nevus cell nevi (NCN). We conducted immunohistochemistry using paraffin-embedded tissue samples from patients and found that most skin tumors express ASIC1/2 and TRPV1/4. Striking results were that BCCs are often negative for ASIC2, while nearly all SCCs express this marker. Epidermal MM sometimes seem to lack ASIC1 in contrast to NCN. Dermal portions of MM show strong expression of TRPV1 more frequently than dermal NCN portions. Some NCN show a decreasing ASIC1/2 expression in deeper dermal tumor tissue, while MM seem to not lose ASIC1/2 in deeper dermal portions. ASIC1, ASIC2, TRPV1 and TRPV4 in skin tumors might be involved in tumor progression, thus being potential diagnostic and therapeutic targets.
Park, K;Kim, H;Kim, H;Lee, K;Lee, S;Kim, J;
| DOI: 10.3390/ph15040390
Muscle atrophy in postmenopausal women is caused by estrogen deficiency and a variety of inflammatory factors, including tumor necrosis factor alpha (TNFα). Paeoniflorin (PNF), a natural compound with anti-inflammatory properties, improves estradiol synthesis. Here, we demonstrate that PNF inhibits the progression of TNFα-induced skeletal muscle atrophy after menopause by restoring mitochondrial biosynthesis. Differentiated myoblasts damaged by TNFα were restored by PNF, as evident by the increase in the expression of myogenin (MyoG) and myosin heavy chain 3 (Myh3)—the markers of muscle differentiation. Moreover, diameter of atrophied myotubes was restored by PNF treatment. TNFα-repressed nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) (a major regulator of mitochondrial biosynthesis) were restored by PNF, via regulation by estrogen receptor alpha (ERα), an upregulator of NRF1. This mechanism was confirmed in ovariectomized (OVX) mice with a ~40% reduction in the cross-sectional area of the anterior tibialis muscle. OVX mice administered PNF (100, 300 mg/kg/day) for 12 weeks recovered more than ~20%. Behavioral, rotarod, and inverted screen tests showed that PNF enhances reduced muscle function in OVX mice. ERα restored expression of mitofusin 1 (MFN1) and mitofusin 2 (MFN2) (mitochondrial fusion markers) and dynamin-related protein (DRP1) and fission 1 (FIS1) (mitochondrial fission markers). Therefore, PNF can prevent muscle atrophy in postmenopausal women by inhibiting dysfunctional mitochondrial biogenesis.
Transboundary and emerging diseases
Alex, CE;Canuti, M;Schlesinger, MS;Jackson, KA;Needle, D;Jardine, C;Nituch, L;Bourque, L;Lang, AS;Pesavento, PA;
PMID: 35279956 | DOI: 10.1111/tbed.14511
Striped skunks (Mephitis mephitis) densely populate the human-animal interface of suburbia throughout North America. Skunks share that habitat with numerous related mesocarnivores, where increased contact, competition for shared food and water sources and other stressors contribute to increased exposure and susceptibility to viral infection. The recently identified skunk amdoparvovirus (SKAV) has been detected at high prevalence in skunks and occasionally in mink, but its distribution in North America is unknown. To understand the impact of SKAV in striped skunks and the risk posed to related species, we investigated the geographic distribution of SKAV, analysed its genetic diversity and evolutionary dynamics and evaluated viral distribution in tissues of infected animals to identify possible mechanisms of transmission. SKAV was detected in 72.5% (37/51) skunks and was present at high rates at all locations tested across North America. Analysis of the complete genomic sequence of 29 strains showed a clear geographic segregation, frequent recombination and marked differences in the evolutionary dynamics of the major structural (VP2) and non-structural (NS1) proteins. NS1 was characterized by a higher variability and a higher percentage of positively selected codons. This could indicate that antibody-mediated enhancement of infection occurs in SKAV, an infection strategy that may be conserved across amdoparvoviruses. Finally, in situ hybridization revealed virus in epithelium of the gastrointestinal tract, urinary tract and skin, indicating that viral transmission could occur via oronasal, faecal and/or urinary secretions, as well as from skin and hair. The endemicity of SKAV over large geographic distances and its high genetic diversity suggest a long-term virus-host association. Persistent shedding and high environmental stability likely contribute to efficient viral spread, simultaneously offering opportunities for cross-species transmission with consequent risk to sympatric species, including domestic animals and wildlife.
Frontiers in cellular neuroscience
Shah, S;Wong, LM;Ellis, K;Bodnar, B;Saribas, S;Ting, J;Wei, Z;Tang, Y;Wang, X;Wang, H;Ling, B;Margolis, DM;Garcia, JV;Hu, W;Jiang, G;
PMID: 35360489 | DOI: 10.3389/fncel.2022.808598
Adeno-associated virus (AAV)-mediated genetic targeting of microglia remains a challenge. Overcoming this hurdle is essential for gene editing in the central nervous system (CNS). Here, we characterized the minimal/native promoter of the HEXB gene, which is known to be specifically and stably expressed in the microglia during homeostatic and pathological conditions. Dual reporter and serial deletion assays identified the critical role of the natural 5' untranslated region (-97 bp related to the first ATG) in driving transcriptional activity of the mouse Hexb gene. The native promoter region of mouse, human, and monkey HEXB are located at -135, -134, and -170 bp to the first ATG, respectively. These promoters were highly active and specific in microglia with strong cross-species transcriptional activities, but did not exhibit activity in primary astrocytes. In addition, we identified a 135 bp promoter of CD68 gene that was highly active in microglia but not in astrocytes. Considering that HEXB is specifically expressed in microglia, these data suggest that the newly characterized microglia-specific HEXB minimal/native promoter can be an ideal candidate for microglia-targeting AAV gene therapy in the CNS.
Zhang, X;Zhang, BW;Xiang, L;Wu, H;Alexander, SAS;Zhou, P;Dai, MZ;Wang, X;Xiong, W;Zhang, Y;Jin, ZB;Deng, LW;
PMID: 35359806 | DOI: 10.1016/j.isci.2022.104058
Histone methylation, particularly at the H3K4 position, is thought to contribute to the specification of photoreceptor cell fate; however, the mechanisms linking histone methylation with transcription factor transactivation and photoreceptor gene expression have not yet been determined. Here, we demonstrate that MLL5 is abundantly expressed in the mouse retina. Mll5 deficiency impaired electroretinogram responses, alongside attenuated expression of a number of retina genes. Mechanistic studies revealed that MLL5 interacts with the retina-specific transcription factor, CRX, contributing to its binding to photoreceptor-specific gene promoters. Moreover, depletion of MLL5 impairs H3K4 methylation and H3K79 methylation, which subsequently compromises CRX-CBP assembly and H3 acetylation on photoreceptor promoters. Our data support a scenario in which recognition of H3K4 methylation by MLL5 is required for photoreceptor-specific gene transcription through maintaining a permissive chromatin state and proper CRX-CBP recruitment at promoter sites.