Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for VGLUT2

ACD can configure probes for the various manual and automated assays for VGLUT2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for VGlut2 (148)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (94)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • vGlut2 (81) Apply vGlut2 filter
  • VGAT (31) Apply VGAT filter
  • Gad1 (13) Apply Gad1 filter
  • VGluT1 (10) Apply VGluT1 filter
  • TH (9) Apply TH filter
  • Slc17a6 (9) Apply Slc17a6 filter
  • Gad2 (7) Apply Gad2 filter
  • FOS (6) Apply FOS filter
  • CCK (5) Apply CCK filter
  • SLC32A1 (5) Apply SLC32A1 filter
  • Pdyn (5) Apply Pdyn filter
  • Phox2b (4) Apply Phox2b filter
  • mCherry (4) Apply mCherry filter
  • Cre (4) Apply Cre filter
  • EYFP (4) Apply EYFP filter
  • vGluT3 (4) Apply vGluT3 filter
  • TBD (4) Apply TBD filter
  • Gal (3) Apply Gal filter
  • egfp (3) Apply egfp filter
  • GLP1R (3) Apply GLP1R filter
  • ITGAM (3) Apply ITGAM filter
  • Penk (3) Apply Penk filter
  • Npy (3) Apply Npy filter
  • Chat (3) Apply Chat filter
  • GFP (3) Apply GFP filter
  • OPRM1 (3) Apply OPRM1 filter
  • GAD65 (3) Apply GAD65 filter
  • GlyT2 (3) Apply GlyT2 filter
  • GAPDH (2) Apply GAPDH filter
  • Adora1 (2) Apply Adora1 filter
  • ESR1 (2) Apply ESR1 filter
  • Sst (2) Apply Sst filter
  • Adcyap1 (2) Apply Adcyap1 filter
  • Trh (2) Apply Trh filter
  • Calb2 (2) Apply Calb2 filter
  • MBP (2) Apply MBP filter
  • Grpr (2) Apply Grpr filter
  • Slc6a3 (2) Apply Slc6a3 filter
  • CARTPT (2) Apply CARTPT filter
  • Nts (2) Apply Nts filter
  • Slc17a7 (2) Apply Slc17a7 filter
  • Chrnb2 (2) Apply Chrnb2 filter
  • AT2R (2) Apply AT2R filter
  • Gad67 (2) Apply Gad67 filter
  • C-fos (2) Apply C-fos filter
  • Chrna6 (2) Apply Chrna6 filter
  • CGRP (2) Apply CGRP filter
  • Pv (2) Apply Pv filter
  • vgat1 (2) Apply vgat1 filter
  • Agtr1a (1) Apply Agtr1a filter

Product

  • RNAscope Fluorescent Multiplex Assay (34) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (29) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (11) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope HiPlex v2 assay (2) Apply RNAscope HiPlex v2 assay filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (85) Apply Neuroscience filter
  • Behavior (3) Apply Behavior filter
  • Pain (3) Apply Pain filter
  • CGT (2) Apply CGT filter
  • Development (2) Apply Development filter
  • Inflammation (2) Apply Inflammation filter
  • Parkinson's Disease (2) Apply Parkinson's Disease filter
  • Sleep (2) Apply Sleep filter
  • Allergy (1) Apply Allergy filter
  • Allodynia (1) Apply Allodynia filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Chronic Itch (1) Apply Chronic Itch filter
  • Depression (1) Apply Depression filter
  • diabetes (1) Apply diabetes filter
  • Feeding (1) Apply Feeding filter
  • Locomotion (1) Apply Locomotion filter
  • Metabolism (1) Apply Metabolism filter
  • Nueroscience (1) Apply Nueroscience filter
  • Other (1) Apply Other filter
  • Other: Anxiety (1) Apply Other: Anxiety filter
  • Other: Apneas (1) Apply Other: Apneas filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Hypertension (1) Apply Other: Hypertension filter
  • Other: Prosocial comforting behavior (1) Apply Other: Prosocial comforting behavior filter
  • Parkinson disease (1) Apply Parkinson disease filter
  • Sickness Behavior (1) Apply Sickness Behavior filter
  • Stem cell (1) Apply Stem cell filter
  • Stem Cells (1) Apply Stem Cells filter
  • Stress (1) Apply Stress filter
  • Vocalization (1) Apply Vocalization filter

Category

  • Publications (94) Apply Publications filter
An amygdala circuit that suppresses social engagement

Nature

2021 Mar 31

Kwon, JT;Ryu, C;Lee, H;Sheffield, A;Fan, J;Cho, DH;Bigler, S;Sullivan, HA;Choe, HK;Wickersham, IR;Heiman, M;Choi, GB;
PMID: 33790466 | DOI: 10.1038/s41586-021-03413-6

Innate social behaviours, such as mating and fighting, are fundamental to animal reproduction and survival1. However, social engagements can also put an individual at risk2. Little is known about the neural mechanisms that enable appropriate risk assessment and the suppression of hazardous social interactions. Here we identify the posteromedial nucleus of the cortical amygdala (COApm) as a locus required for the suppression of male mating when a female mouse is unhealthy. Using anatomical tracing, functional imaging and circuit-level epistatic analyses, we show that suppression of mating with an unhealthy female is mediated by the COApm projections onto the glutamatergic population of the medial amygdalar nucleus (MEA). We further show that the role of the COApm-to-MEA connection in regulating male mating behaviour relies on the neuromodulator thyrotropin-releasing hormone (TRH). TRH is expressed in the COApm, whereas the TRH receptor (TRHR) is found in the postsynaptic MEA glutamatergic neurons. Manipulating neural activity of TRH-expressing neurons in the COApm modulated male mating behaviour. In the MEA, activation of the TRHR pathway by ligand infusion inhibited mating even towards healthy female mice, whereas genetic ablation of TRHR facilitated mating with unhealthy individuals. In summary, we reveal a neural pathway that relies on the neuromodulator TRH to modulate social interactions according to the health status of the reciprocating individual. Individuals must balance the cost of social interactions relative to the benefit, as deficits in the ability to select healthy mates may lead to the spread of disease.
Cannabinoid CB2 receptors are expressed in glutamate neurons in the red nucleus and functionally modulate motor behavior in mice

Neuropharmacology

2021 Mar 28

Zhang, HY;Shen, H;Gao, M;Ma, Z;Hempel, B;Bi, GH;Gardner, EL;Wu, J;Xi, ZX;
PMID: 33789118 | DOI: 10.1016/j.neuropharm.2021.108538

Cannabinoids produce a number of central nervous system effects via the CB2 receptor (CB2R), including analgesia, antianxiety, anti-reward, hypoactivity and attenuation of opioid-induced respiratory depression. However, the cellular distributions of the CB2Rs in the brain remain unclear. We have reported that CB2Rs are expressed in midbrain dopamine (DA) neurons and functionally regulate DA-mediated behavior(s). Unexpectedly, high densities of CB2-like signaling were also found in a neighboring motor structure - the red nucleus (RN) of the midbrain. In the present study, we systematically explored CB2R expression and function in the RN. Immunohistochemistry and in situ hybridization assays showed high densities of CB2R-immunostaining and mRNA signal in RN magnocellular glutamate neurons in wildtype and CB1-knockout, but not CB2-knockout, mice. Ex vivo electrophysiological recordings in midbrain slices demonstrated that CB2R activation by JWH133 dose-dependently inhibited firing rates of RN magnocellular neurons in wildtype, but not CB2-knockout, mice, while having no effect on RN GABA neurons in transgenic GAD67-GFP reporter mice, suggesting CB2-mediated effects on glutamatergic neurons. In addition, microinjection of JWH133 into the RN produced robust ipsilateral rotations in wildtype, but not CB2-knockout mice, which was blocked by pretreatment with either a CB2 or DA D1 or D2 receptor antagonist, suggesting a DA-dependent effect. Finally, fluorescent tract tracing revealed glutamatergic projections from the RN to multiple brain areas including the ventral tegmental area, nucleus accumbens, thalamus, and cerebellum. These findings suggest that CB2Rs in RN glutamate neurons functionally modulate motor activity, and therefore, constitute a new target in cannabis-based medication development for motor disorders.
Medial amygdala Kiss1 neurons mediate female pheromone stimulation of LH in male mice.

Neuroendocrinology. 2018 Dec 10.

2018 Dec 10

Aggarwal S, Tang C, Sing K, Kim HW, Millar RP, Tello JA.
PMID: 30537700 | DOI: 10.1159/000496106

Background/Aims: The medial amygdala (MeA) responds to olfactory stimuli and alters reproductive physiology. However, the neuronal circuit that relays signals from the MeA to the reproductive axis remains poorly defined. This study aimed to test whether MeA kisspeptin (MeAKiss) neurons in male mice are sensitive to sexually relevant olfactory stimuli and transmit signals to alter reproductive physiology. We also investigated whether MeAKiss neurons have the capacity to elaborate glutamate and GABA neurotransmitters and potentially contribute to reproductive axis regulation.
Methods: Using female mouse urine as a pheromone stimulus, neuronal activity in the MeAKiss was analysed and serum LH was measured in male mice. Next, using a chemogenetic approach, MeAKiss neurons were bi-directionally modulated to measure the effect on serum LH and evaluate the activation of the preoptic area. Lastly, using in situ hybridization, we identified the proportion of MeAKiss neurons that express markers for GABAergic (Vgat) and glutamatergic (Vglut2) neurotransmission.
Results: Male mice exposed to female urine showed a two-fold increase in the number c-Fos positive MeAKiss neurons concomitant with raised LH. Chemogenetic activation of MeAKiss neurons significantly increased LH in the absence of urine exposure, whereas inhibition of MeAKiss neurons did not alter LH. In situ hybridization revealed that MeAKiss neurons are a mixed neuronal population in which 71% express Vgat mRNA, 29% express Vglut2 mRNA, and 6% express both.
Conclusions: Together our results uncover the brain circuitry through which MeAKiss neurons process sexually relevant olfactory signals to influence reproductive hormone levels in male mice, likely through a complex interplay of neuropeptide and neurotransmitter signalling
Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation and anesthesia.

J Neurosci.

2017 Mar 31

Wenker IC, Abe C, Viar KE, Stornetta DS, Stornetta RL, Guyenet PG.
PMID: 28363984 | DOI: 10.1523/JNEUROSCI.3922-16.2017

Current understanding of the contribution of C1 neurons to blood pressure (BP) regulation derives predominantly from experiments carried out in anesthetized animals or reduced ex vivo preparations. Here we use ArchaerhodopsinT3.0 (ArchT) loss-of-function optogenetics to explore BP regulation by C1 neurons in intact unanesthetized rats. Using a lentivirus that expresses ArchT under the Phox2b-activated promoter PRSx8 (PRSx8-ArchT), ∼65% of transduced neurons were C1 (balance retrotrapezoid nucleus, RTN). Other rats received CaMKII-ArchT3.0 AAV2 (CaMKII-ArchT) which transduced C1 neurons and larger numbers of unidentified glutamatergic and GABAergic cells.Under anesthesia, ArchT-photoactivation reduced sympathetic nerve activity and BP and silenced/strongly inhibited most (7/12) putative C1 neurons. In unanesthetized PRSx8-ArchT-treated rats breathing room air, bilateral ArchT-photoactivation caused a very small BP reduction that was only slightly larger under hypercapnia (6% FiCO2) but was greatly enhanced during hypoxia (10 and 12% FiO2), after sino-aortic denervation, or during isoflurane anesthesia. Degree of hypotension correlated with percentage of ArchT-transduced C1 cells. ArchT-photoactivation produced similar BP changes in CaMKII-ArchT-treated rats. Photoactivation in PRSX8-ArchT rats reduced breathing frequency (FR); in CamKII-ArchT rats FR increased.We conclude that the BP drop elicited by ArchT activation resulted from C1 inhibition and was unrelated to breathing changes. C1 neurons have low activity under normoxia but their activation is important to BP stability during hypoxia or anesthesia and contributes greatly to the hypertension caused by baroreceptor deafferentation. Finally, C1 neurons are marginally activated by hypercapnia and the large breathing stimulation caused by this stimulus has very little impact on resting BP.SIGNIFICANCE STATEMENTC1 neurons (C1) are glutamatergic/peptidergic/catecholaminergic neurons located in the medulla oblongata, which may operate as a switchboard for differential, behavior-appropriate, activation of selected sympathetic efferents. Based largely on experimentation in anesthetized or reduced preparations, a rostrally-located subset of C1 may contribute to both BP stabilization and dysregulation (hypertension). Here we used Archaerhodopsin-based loss-of-function optogenetics to explore the contribution of these neurons to BP in conscious rats. The results suggest that C1 contributes little to resting BP under normoxia or hypercapnia, C1 discharge is continuously restrained by arterial baroreceptors and C1 activation is critical to stabilize BP under hypoxia or anesthesia. This optogenetic approach could also be useful to explore the role of C1 during specific behaviors or in hypertensive models.

Neuromedin B expression defines the mouse retrotrapezoid nucleus

JNeurosci

2017 Oct 24

Shi Y, Stornetta RL, Stornetta DS, Onengut-Gumuscu S, Farber EA, Turner SD, Guyenet PG, Bayliss DA.
PMID: 29066557 | DOI: 10.1523/JNEUROSCI.2055-17.2017

The retrotrapezoid nucleus (RTN) consists, by definition, of Phox2b-expressing, glutamatergic, non-catecholaminergic, non-cholinergic neurons located in the parafacial region of the medulla oblongata. An unknown proportion of RTN neurons are central respiratory chemoreceptors and there is mounting evidence for biochemical diversity among these cells. Here, we used multiplexed in situ hybridization and single-cell RNA-Seq in male and female mice to provide a more comprehensive view of the phenotypic diversity of RTN neurons. We now demonstrate that the RTN of mice can be identified with a single and specific marker, Nmb mRNA. Most (∼75%) RTN neurons express low-to-moderate levels of Nmb and display chemoreceptor properties. Namely they are activated by hypercapnia, but not by hypoxia, and express proton sensors, Kcnk5 and Gpr4 These Nmb-low RTN neurons also express varying levels of transcripts for Gal, Penk and Adcyap1,and receptors for substance P, orexin, serotonin and ATP. A subset of RTN neurons (∼20-25%), typically larger than average, express very high levels of Nmb mRNA. These Nmb-high RTN neurons do not express Fos after hypercapnia, have low-to-undetectable levels of Kcnk5 or Gpr4 transcripts; they also express Adcyap1, but are essentially devoid of Penk and Gal transcripts. In male rats, Nmb is also a marker of the RTN but, unlike in mice, this gene is expressed by other types of nearby neurons located within the ventromedial medulla. In sum, Nmb is a selective marker of the RTN in rodents; Nmb-low neurons, the vast majority, are central respiratory chemoreceptors whereas Nmb-high neurons likely have other functions.SIGNIFICANCE STATEMENTCentral respiratory chemoreceptors regulate arterial PCO2 by adjusting lung ventilation. Such cells have recently been identified within the retrotrapezoid nucleus (RTN), a brainstem nucleus defined by genetic lineage and a cumbersome combination of markers. Using single-cell RNA-Seq and multiplexed in situ hybridization, we show here that a single marker, Neuromedin B mRNA (Nmb), identifies RTN neurons in rodents. We also suggest that >75% of these Nmb neurons are chemoreceptors because they are strongly activated by hypercapnia and express high levels of proton sensors (Kcnk5 and Gpr4). The other RTN neurons express very high levels of Nmb, but low levels of Kcnk5/Gpr4/pre-pro-galanin/pre-pro-enkephalin, and do not respond to hypercapnia. Their function is unknown.

The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety.

eNeuro

2019 Feb 12

Taylor NE, Pei J, Zhang J, Vlasov KY, Davis T, Taylor E, Wenig FJ, Van Dort CJ, Solt K, Brown EN.
PMID: - | DOI: 10.1523/ENEURO.0018-18.2019

The periaqueductal gray (PAG) is a significant modulator of both analgesic and fear behaviors in both humans and rodents, but the underlying circuitry responsible for these two phenotypes is incompletely understood. Importantly, it is not known if there is a way to produce analgesia without anxiety by targeting the PAG, as modulation of glutamate or GABA neurons in this area initiates both antinociceptive and anxiogenic behavior. While dopamine (DA) neurons in the ventrolateral PAG (vlPAG) /dorsal raphe display a supraspinal antinociceptive effect, their influence on anxiety and fear are unknown. Using DAT-cre and Vglut2-cre male mice, we introduced Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to DA and glutamate neurons within the vlPAG using viral-mediated delivery and found that levels of analgesia were significant and quantitatively similar when DA and glutamate neurons were selectively stimulated. Activation of glutamatergic neurons, however, reliably produced higher indices of anxiety, with increased freezing time and more time spent in the safety of a dark enclosure. In contrast, animals in which PAG/dorsal raphe DA neurons were stimulated failed to show fear behaviors. DA-mediated antinociception was inhibitable by haloperidol and was sufficient to prevent persistent inflammatory pain induced by carrageenan. In summary, only activation of DA neurons in the PAG/dorsal raphe produced profound analgesia without signs of anxiety, indicating that PAG/dorsal raphe DA neurons are an important target involved in analgesia that may lead to new treatments for pain.

Significance Statement Clinicians have long had the goal of separating analgesia from anxiety when using deep brain electrical stimulation of the periaqueductal gray (PAG) for difficult to treat pain. Here we show that selective activation of dopamine neurons within the PAG produces analgesia without other behavioral effects, while stimulating glutamate neurons mediates stress-induced anxiety and analgesia. Our results suggest that dopamine agonists may represent a novel class of analgesic drugs and elucidate target neurons that could mediate their effect.

Selectively inhibiting the median preoptic nucleus attenuates angiotensin II and hyperosmotic-induced drinking behavior and vasopressin release in adult male rats.

eNeuro

2019 Mar 07

Marciante AB, Wang LA, Farmer GE, Cunningham JT.
PMID: - | DOI: 10.1523/ENEURO.0473-18.2019

The median preoptic nucleus (MnPO) is a putative integrative region that contributes to body fluid balance. Activation of the MnPO can influence thirst but it is not clear how these responses are linked to body fluid homeostasis. We used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to determine the role of the MnPO in drinking behavior and vasopressin release in response to peripheral angiotensin II (ANG II) or 3% hypertonic saline in adult male Sprague-Dawley rats (250-300g). Rats were anesthetized with isoflurane and stereotaxically injected with an inhibitory DREADD (rAAV5-CaMKIIa-hM4D(Gi)-mCherry) or control (rAAV5-CaMKIIa-mCherry) virus in the MnPO. After 2 weeks’ recovery, a subset of rats were used for extracellular recordings to verify functional effects of ANG II or hyperosmotic challenges in MnPO slice preparations. Remaining rats were used in drinking behavior studies. Each rat was administered either 10mg/kg of exogenous clozapine-N-oxide (CNO) to inhibit DREADD-expressing cells or vehicle ip followed by a test treatment with either 2mg/kg ANG II or 3% hypertonic saline (1mL/100g bw) sc, twice per week for two separate treatment weeks. CNO-induced inhibition during either test treatment significantly attenuated drinking responses compared to vehicle treatments and controls. Brain tissue processed for cFos immunohistochemistry showed decreased expression with CNO-induced inhibition during either test treatment in the MnPO and downstream nuclei compared to controls. CNO-mediated inhibition significantly attenuated treatment-induced increases in plasma vasopressin compared to controls. The results indicate inhibition of CaMKIIa-expressing MnPO neurons significantly reduces drinking and vasopressin release in response to ANG II or hyperosmotic challenge.

Significance Statement The MnPO is an important regulatory center that influences thirst, cardiovascular and neuroendocrine function. Activation of different MnPO neuronal populations can inhibit or stimulate water intake. However, the role of the MnPO and its pathway-specific projections during ANG II and hyperosmotic challenges still have not yet been fully elucidated. These studies directly address this by using DREADDs to acutely and selectively inhibit pathway-specific MnPO neurons, and uses techniques that measure changes at the protein, neuronal, and overall physiological and behavioral level. More importantly, we have been able to demonstrate that physiological challenges related to extracellular (ANG II) or cellular (hypertonic saline) dehydration activate MnPO neurons that may project to different parts of the hypothalamus.

Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice

Front Neuroanat

2019 Mar 08

Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J and Gundlach AL
PMID: 30906254 | DOI: 10.3389/fnana.2019.00030

Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 (loxP/loxP) mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV((1/2))-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
The amygdala modulates prepulse inhibition of the auditory startle reflex through excitatory inputs to the caudal pontine reticular nucleus

BMC biology

2021 Jun 03

Cano, JC;Huang, W;Fénelon, K;
PMID: 34082731 | DOI: 10.1186/s12915-021-01050-z

Sensorimotor gating is a fundamental pre-attentive process that is defined as the inhibition of a motor response by a sensory event. Sensorimotor gating, commonly measured using the prepulse inhibition (PPI) of the auditory startle reflex task, is impaired in patients suffering from various neurological and psychiatric disorders. PPI deficits are a hallmark of schizophrenia, and they are often associated with attention and other cognitive impairments. Although the reversal of PPI deficits in animal models is widely used in pre-clinical research for antipsychotic drug screening, the neurotransmitter systems and synaptic mechanisms underlying PPI are still not resolved, even under physiological conditions. Recent evidence ruled out the longstanding hypothesis that PPI is mediated by midbrain cholinergic inputs to the caudal pontine reticular nucleus (PnC). Instead, glutamatergic, glycinergic, and GABAergic inhibitory mechanisms are now suggested to be crucial for PPI, at the PnC level. Since amygdalar dysfunctions alter PPI and are common to pathologies displaying sensorimotor gating deficits, the present study was designed to test that direct projections to the PnC originating from the amygdala contribute to PPI.Using wild type and transgenic mice expressing eGFP under the control of the glycine transporter type 2 promoter (GlyT2-eGFP mice), we first employed tract-tracing, morphological reconstructions, and immunohistochemical analyses to demonstrate that the central nucleus of the amygdala (CeA) sends glutamatergic inputs lateroventrally to PnC neurons, including GlyT2+ cells. Then, we showed the contribution of the CeA-PnC excitatory synapses to PPI in vivo by demonstrating that optogenetic inhibition of this connection decreases PPI, and optogenetic activation induces partial PPI. Finally, in GlyT2-Cre mice, whole-cell recordings of GlyT2+ PnC neurons in vitro paired with optogenetic stimulation of CeA fibers, as well as photo-inhibition of GlyT2+ PnC neurons in vivo, allowed us to implicate GlyT2+ neurons in the PPI pathway.Our results uncover a feedforward inhibitory mechanism within the brainstem startle circuit by which amygdalar glutamatergic inputs and GlyT2+ PnC neurons contribute to PPI. We are providing new insights to the clinically relevant theoretical construct of PPI, which is disrupted in various neuropsychiatric and neurological diseases.
Liraglutide Modulates Appetite and Body Weight Via GLP-1R-Expressing Glutamatergic Neurons

Diabetes.

2018 May 18

Adams JM, Pei H, Sandoval DA, Seeley RJ, Chang RB, Liberles SD, Olson DP.
PMID: 29776968 | DOI: 10.2337/db17-1385

Glucagon-like peptide-1 receptor (GLP-1R) agonists are FDA-approved weight loss drugs. Despite their widespread use, the sites of action through which GLP-1R agonists (GLP1RAs) impact appetite and body weight are still not fully understood. Here, we determined whether GLP-1Rs in either GABAergic or glutamatergic neurons are necessary for the acute and chronic effects of the GLP1RA liraglutide on food intake, visceral illness, body weight and neural network activation. We found that mice lacking GLP-1Rs in vGAT-expressing GABAergic neurons responded identically to controls in all parameters measured, whereas deletion of GLP-1Rs in vGlut2-expressing glutamatergic neurons eliminated liraglutide-induced weight loss and visceral illness and severely attenuated its effects on feeding. Concomitantly, deletion of GLP-1Rs from glutamatergic neurons completely abolished the neural network activation observed after liraglutide administration. We conclude that liraglutide activates a dispersed but discrete neural network to mediate its physiological effects, and that these effects require GLP-1R expression on glutamatergic but not GABAergic neurons.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?