Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for VGLUT2

ACD can configure probes for the various manual and automated assays for VGLUT2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for VGlut2 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (11)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • vGlut2 (10) Apply vGlut2 filter
  • VGAT (3) Apply VGAT filter
  • Gad1 (2) Apply Gad1 filter
  • EYFP (2) Apply EYFP filter
  • CCK (1) Apply CCK filter
  • TH (1) Apply TH filter
  • Sst (1) Apply Sst filter
  • TAC1 (1) Apply TAC1 filter
  • Penk (1) Apply Penk filter
  • Adcyap1 (1) Apply Adcyap1 filter
  • Gad2 (1) Apply Gad2 filter
  • OPRM1 (1) Apply OPRM1 filter
  • Pdyn (1) Apply Pdyn filter
  • TCF7L2 (1) Apply TCF7L2 filter
  • CGRP (1) Apply CGRP filter
  • Mouse: Clstn2 (1) Apply Mouse: Clstn2 filter
  • Human: VGLUT2 ( SLC17A6 ) (1) Apply Human: VGLUT2 ( SLC17A6 ) filter

Product

  • (-) Remove RNAscope filter RNAscope (11)

Research area

  • Neuroscience (11) Apply Neuroscience filter
  • Behavior (1) Apply Behavior filter
  • Other: Prosocial comforting behavior (1) Apply Other: Prosocial comforting behavior filter
  • Pain (1) Apply Pain filter
  • Parkinson disease (1) Apply Parkinson disease filter
  • Sickness Behavior (1) Apply Sickness Behavior filter
  • Sleep (1) Apply Sleep filter
  • Stem Cells (1) Apply Stem Cells filter
  • Vocalization (1) Apply Vocalization filter

Category

  • Publications (11) Apply Publications filter
Glutamatergic PPT neurons control wakefulness and locomotion via distinct axonal projections

Sleep

2022 Sep 28

Kroeger, D;Thundercliffe, J;Phung, A;De Luca, R;Geraci, C;Bragg, S;McCafferty, KJ;Bandaru, SS;Arrigoni, E;Scammell, TE;
PMID: 36170177 | DOI: 10.1093/sleep/zsac242

The pedunculopontine tegmental nucleus (PPT) is implicated in many brain functions, ranging from sleep/wake control and locomotion, to reward mechanisms and learning. The PPT contains cholinergic, GABAergic and glutamatergic neurons with extensive ascending and descending axonal projections. Glutamatergic PPT (PPT vGlut2) neurons are thought to promote wakefulness, but the mechanisms through which this occurs are unknown. In addition, some researchers propose that PPT vGlut2 neurons promote locomotion, yet even though the PPT is a target for deep brain stimulation in Parkinson's disease, the role of the PPT in locomotion is debated. We hypothesized that PPT vGluT2 neurons drive arousal and specific waking behaviors via certain projections and modulate locomotion via others.We mapped the axonal projections of PPT vGlut2 neurons using conditional anterograde tracing and then photostimulated PPT vGlut2 soma or their axon terminal fields across sleep/wake states and analyzed sleep/wake behavior, muscle activity, and locomotion in transgenic mice.We found that stimulation of PPT vGlut2 soma and their axon terminals rapidly triggered arousals from NREM sleep, especially with activation of terminals in the basal forebrain (BF) and lateral hypothalamus (LH). With photoactivation of PPT vGlut2 terminals in the BF and LH, this wakefulness was accompanied by locomotion and other active behaviors, but stimulation of PPT vGlut2 soma and terminals in the substantia nigra triggered only quiet wakefulness without locomotion.These findings demonstrate the importance of the PPT vGluT2 neurons in driving various aspects of arousal and show that heterogeneous brain nuclei, such as the PPT, can promote a variety of behaviors via distinct axonal projections.
Neural control of affiliative touch in prosocial interaction

Nature

2021 Oct 13

Wu, YE;Dang, J;Kingsbury, L;Zhang, M;Sun, F;Hu, RK;Hong, W;
PMID: 10.1038/s41586-021-03962-w | DOI: Ethics declarations

Identification of brain-to-spinal circuits controlling the laterality and duration of mechanical allodynia in mice

Cell reports

2023 Mar 22

Huo, J;Du, F;Duan, K;Yin, G;Liu, X;Ma, Q;Dong, D;Sun, M;Hao, M;Su, D;Huang, T;Ke, J;Lai, S;Zhang, Z;Guo, C;Sun, Y;Cheng, L;
PMID: 36952340 | DOI: 10.1016/j.celrep.2023.112300

Mechanical allodynia (MA) represents one prevalent symptom of chronic pain. Previously we and others have identified spinal and brain circuits that transmit or modulate the initial establishment of MA. However, brain-derived descending pathways that control the laterality and duration of MA are still poorly understood. Here we report that the contralateral brain-to-spinal circuits, from Oprm1 neurons in the lateral parabrachial nucleus (lPBNOprm1), via Pdyn neurons in the dorsal medial regions of hypothalamus (dmHPdyn), to the spinal dorsal horn (SDH), act to prevent nerve injury from inducing contralateral MA and reduce the duration of bilateral MA induced by capsaicin. Ablating/silencing dmH-projecting lPBNOprm1 neurons or SDH-projecting dmHPdyn neurons, deleting Dyn peptide from dmH, or blocking spinal κ-opioid receptors all led to long-lasting bilateral MA. Conversely, activation of dmHPdyn neurons or their axonal terminals in SDH can suppress sustained bilateral MA induced by lPBN lesion.
TCF7L2 acts as a molecular switch in midbrain to control mammal vocalization through its DNA binding domain but not transcription activation domain

Molecular psychiatry

2023 Feb 13

Qi, H;Luo, L;Lu, C;Chen, R;Zhou, X;Zhang, X;Jia, Y;
PMID: 36782064 | DOI: 10.1038/s41380-023-01993-5

Vocalization is an essential medium for social signaling in birds and mammals. Periaqueductal gray (PAG) a conserved midbrain structure is believed to be responsible for innate vocalizations, but its molecular regulation remains largely unknown. Here, through a mouse forward genetic screening we identified one of the key Wnt/β-catenin effectors TCF7L2/TCF4 controls ultrasonic vocalization (USV) production and syllable complexity during maternal deprivation and sexual encounter. Early developmental expression of TCF7L2 in PAG excitatory neurons is necessary for the complex trait, while TCF7L2 loss reduces neuronal gene expressions and synaptic transmission in PAG. TCF7L2-mediated vocal control is independent of its β-catenin-binding domain but dependent of its DNA binding ability. Patient mutations associated with developmental disorders, including autism spectrum disorders, disrupt the transcriptional repression effect of TCF7L2, while mice carrying those mutations display severe USV impairments. Therefore, we conclude that TCF7L2 orchestrates gene expression in midbrain to control vocal production through its DNA binding but not transcription activation domain.
Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus

Science translational medicine

2022 Dec 07

Tang, YL;Liu, AL;Lv, SS;Zhou, ZR;Cao, H;Weng, SJ;Zhang, YQ;
PMID: 36475906 | DOI: 10.1126/scitranslmed.abq6474

Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour

Nature

2022 Sep 01

Ilanges, A;Shiao, R;Shaked, J;Luo, JD;Yu, X;Friedman, JM;
PMID: 36071158 | DOI: 10.1038/s41586-022-05161-7

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.
Human midbrain dopaminergic neuronal differentiation markers predict cell therapy outcome in a Parkinson's disease model

The Journal of clinical investigation

2022 Jun 14

Xu, P;He, H;Gao, Q;Zhou, Y;Wu, Z;Zhang, X;Sun, L;Hu, G;Guan, Q;You, Z;Zhang, X;Zheng, W;Xiong, M;Chen, Y;
PMID: 35700056 | DOI: 10.1172/JCI156768

Human pluripotent stem cell (hPSC)-based replacement therapy holds great promise in treating Parkinson's disease (PD). However, the heterogeneity of hPSC-derived donor cells and the low yield of midbrain dopaminergic (mDA) neurons after transplantation hinder its broad clinical application. Here, we depicted the single-cell molecular landscape during mDA neuron differentiation. We found that this process recapitulated the development of multiple but adjacent fetal brain regions including ventral midbrain, isthmus, and ventral hindbrain, resulting in heterogenous donor cell population. We reconstructed the differentiation trajectory of mDA lineage and identified CLSTN2 and PTPRO as specific surface markers of mDA progenitors, which were predictive of mDA neuron differentiation and could facilitate highly enriched mDA neurons (up to 80%) following progenitor sorting and transplantation. Marker sorted progenitors exhibited higher therapeutic potency in correcting motor deficits of PD mice. Different marker sorted grafts had a strikingly consistent cellular composition, in which mDA neurons were enriched, while off-target neuron types were mostly depleted, suggesting stable graft outcomes. Our study provides a better understanding of cellular heterogeneity during mDA neuron differentiation, and establishes a strategy to generate highly purified donor cells to achieve stable and predictable therapeutic outcomes, raising the prospect of hPSC-based PD cell replacement therapies.
Dopamine Neurons That Cotransmit Glutamate, From Synapses to Circuits to Behavior

Frontiers in Neural Circuits

2021 May 19

Eskenazi, D;Malave, L;Mingote, S;Yetnikoff, L;Ztaou, S;Velicu, V;Rayport, S;Chuhma, N;
| DOI: 10.3389/fncir.2021.665386

Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.
Whole-brain monosynaptic inputs and outputs of leptin receptor b neurons of the nucleus tractus solitarii in mice

Brain research bulletin

2023 Jun 20

Sun, L;Zhu, M;Wang, M;Hao, Y;Hao, Y;Jing, X;Yu, H;Shi, Y;Zhang, X;Wang, S;Yuan, F;Yuan, XS;
PMID: 37348822 | DOI: 10.1016/j.brainresbull.2023.110693

The nucleus tractus solitarii (NTS) is the primary central station that integrates visceral afferent information and regulates respiratory, gastrointestinal, cardiovascular, and other physiological functions. Leptin receptor b (LepRb)-expressing neurons of the NTS (NTSLepRb neurons) are implicated in central respiration regulation, respiratory facilitation, and respiratory drive enhancement. Furthermore, LepRb dysfunction is involved in obesity, insulin resistance, and sleep-disordered breathing. However, the monosynaptic inputs and outputs of NTSLepRb neurons in whole-brain mapping remain to be elucidated. Therefore, the exploration of its whole-brain connection system may provide strong support for comprehensively understanding the physiological and pathological functions of NTSLepRb neurons. In the present study, we used a cell type-specific, modified rabies virus and adeno-associated virus with the Cre-loxp system to map monosynaptic inputs and outputs of NTSLepRb neurons in LepRb-Cre mice. The results showed that NTSLepRb neurons received inputs from 48 nuclei in the whole brain from five brain regions, including especially the medulla. We found that NTSLepRb neurons received inputs from nuclei associated with respiration, such as the pre-Bötzinger complex, ambiguus nucleus, and parabrachial nucleus. Interestingly, some brain areas related to cardiovascular regulation-i.e., the ventrolateral periaqueductal gray and locus coeruleus-also sent a small number of inputs to NTSLepRb neurons. In addition, anterograde tracing results demonstrated that NTSLepRb neurons sent efferent projections to 15 nuclei, including the dorsomedial hypothalamic nucleus and arcuate hypothalamic nucleus, which are involved in regulation of energy metabolism and feeding behaviors. Quantitative statistical analysis revealed that the inputs of the whole brain to NTSLepRb neurons were significantly greater than the outputs. Our study comprehensively revealed neuronal connections of NTSLepRb neurons in the whole brain and provided a neuroanatomical basis for further research on physiological and pathological functions of NTSLepRb neurons.
Cannabinoid CB2 receptors are expressed in glutamate neurons in the red nucleus and functionally modulate motor behavior in mice

Neuropharmacology

2021 Mar 28

Zhang, HY;Shen, H;Gao, M;Ma, Z;Hempel, B;Bi, GH;Gardner, EL;Wu, J;Xi, ZX;
PMID: 33789118 | DOI: 10.1016/j.neuropharm.2021.108538

Cannabinoids produce a number of central nervous system effects via the CB2 receptor (CB2R), including analgesia, antianxiety, anti-reward, hypoactivity and attenuation of opioid-induced respiratory depression. However, the cellular distributions of the CB2Rs in the brain remain unclear. We have reported that CB2Rs are expressed in midbrain dopamine (DA) neurons and functionally regulate DA-mediated behavior(s). Unexpectedly, high densities of CB2-like signaling were also found in a neighboring motor structure - the red nucleus (RN) of the midbrain. In the present study, we systematically explored CB2R expression and function in the RN. Immunohistochemistry and in situ hybridization assays showed high densities of CB2R-immunostaining and mRNA signal in RN magnocellular glutamate neurons in wildtype and CB1-knockout, but not CB2-knockout, mice. Ex vivo electrophysiological recordings in midbrain slices demonstrated that CB2R activation by JWH133 dose-dependently inhibited firing rates of RN magnocellular neurons in wildtype, but not CB2-knockout, mice, while having no effect on RN GABA neurons in transgenic GAD67-GFP reporter mice, suggesting CB2-mediated effects on glutamatergic neurons. In addition, microinjection of JWH133 into the RN produced robust ipsilateral rotations in wildtype, but not CB2-knockout mice, which was blocked by pretreatment with either a CB2 or DA D1 or D2 receptor antagonist, suggesting a DA-dependent effect. Finally, fluorescent tract tracing revealed glutamatergic projections from the RN to multiple brain areas including the ventral tegmental area, nucleus accumbens, thalamus, and cerebellum. These findings suggest that CB2Rs in RN glutamate neurons functionally modulate motor activity, and therefore, constitute a new target in cannabis-based medication development for motor disorders.
The amygdala modulates prepulse inhibition of the auditory startle reflex through excitatory inputs to the caudal pontine reticular nucleus

BMC biology

2021 Jun 03

Cano, JC;Huang, W;Fénelon, K;
PMID: 34082731 | DOI: 10.1186/s12915-021-01050-z

Sensorimotor gating is a fundamental pre-attentive process that is defined as the inhibition of a motor response by a sensory event. Sensorimotor gating, commonly measured using the prepulse inhibition (PPI) of the auditory startle reflex task, is impaired in patients suffering from various neurological and psychiatric disorders. PPI deficits are a hallmark of schizophrenia, and they are often associated with attention and other cognitive impairments. Although the reversal of PPI deficits in animal models is widely used in pre-clinical research for antipsychotic drug screening, the neurotransmitter systems and synaptic mechanisms underlying PPI are still not resolved, even under physiological conditions. Recent evidence ruled out the longstanding hypothesis that PPI is mediated by midbrain cholinergic inputs to the caudal pontine reticular nucleus (PnC). Instead, glutamatergic, glycinergic, and GABAergic inhibitory mechanisms are now suggested to be crucial for PPI, at the PnC level. Since amygdalar dysfunctions alter PPI and are common to pathologies displaying sensorimotor gating deficits, the present study was designed to test that direct projections to the PnC originating from the amygdala contribute to PPI.Using wild type and transgenic mice expressing eGFP under the control of the glycine transporter type 2 promoter (GlyT2-eGFP mice), we first employed tract-tracing, morphological reconstructions, and immunohistochemical analyses to demonstrate that the central nucleus of the amygdala (CeA) sends glutamatergic inputs lateroventrally to PnC neurons, including GlyT2+ cells. Then, we showed the contribution of the CeA-PnC excitatory synapses to PPI in vivo by demonstrating that optogenetic inhibition of this connection decreases PPI, and optogenetic activation induces partial PPI. Finally, in GlyT2-Cre mice, whole-cell recordings of GlyT2+ PnC neurons in vitro paired with optogenetic stimulation of CeA fibers, as well as photo-inhibition of GlyT2+ PnC neurons in vivo, allowed us to implicate GlyT2+ neurons in the PPI pathway.Our results uncover a feedforward inhibitory mechanism within the brainstem startle circuit by which amygdalar glutamatergic inputs and GlyT2+ PnC neurons contribute to PPI. We are providing new insights to the clinically relevant theoretical construct of PPI, which is disrupted in various neuropsychiatric and neurological diseases.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?