Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for P16

ACD can configure probes for the various manual and automated assays for P16 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for P16 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (52)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove HPV E6/E7 filter HPV E6/E7 (51)
  • TBD (15) Apply TBD filter
  • HPV-HR18 (8) Apply HPV-HR18 filter
  • HPV18 (5) Apply HPV18 filter
  • HPV (5) Apply HPV filter
  • 18 (5) Apply 18 filter
  • 31 (5) Apply 31 filter
  • 33 (5) Apply 33 filter
  • HPV16 (4) Apply HPV16 filter
  • p16 (4) Apply p16 filter
  • 35 (4) Apply 35 filter
  • 52 (4) Apply 52 filter
  • HPV HR18 (3) Apply HPV HR18 filter
  • 39 (3) Apply 39 filter
  • 45 (3) Apply 45 filter
  • 51 (3) Apply 51 filter
  • 56 (3) Apply 56 filter
  • 58 (3) Apply 58 filter
  • 59 (3) Apply 59 filter
  • egfp (2) Apply egfp filter
  • HPV16/18 (2) Apply HPV16/18 filter
  • HPV HR7 (2) Apply HPV HR7 filter
  • E7 (2) Apply E7 filter
  • 26 (2) Apply 26 filter
  • HPV 16 (2) Apply HPV 16 filter
  • 53 (2) Apply 53 filter
  • 66 (2) Apply 66 filter
  • 68 (2) Apply 68 filter
  • 73 (2) Apply 73 filter
  • 82 (2) Apply 82 filter
  • CD34 (1) Apply CD34 filter
  • Vegfa (1) Apply Vegfa filter
  • MDM2 (1) Apply MDM2 filter
  • Cxcl1 (1) Apply Cxcl1 filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter
  • HPV52 (1) Apply HPV52 filter
  • HPV58 (1) Apply HPV58 filter
  • E6 (1) Apply E6 filter
  • IL-8 (1) Apply IL-8 filter
  • HER3 (1) Apply HER3 filter
  • Heregulin (1) Apply Heregulin filter
  • p16LUC (1) Apply p16LUC filter
  • p21 (1) Apply p21 filter
  • HPV-HR16 (1) Apply HPV-HR16 filter
  • HPV-16/18 (1) Apply HPV-16/18 filter
  • HR-HPV-18 (1) Apply HR-HPV-18 filter
  • HPV-31 (1) Apply HPV-31 filter
  • E6/E7 (1) Apply E6/E7 filter

Product

  • RNAscope 2.0 Assay (21) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (3) Apply RNAscope 2.5 LS Assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter

Research area

  • Cancer (52) Apply Cancer filter
  • HPV (48) Apply HPV filter
  • Infectious Disease (45) Apply Infectious Disease filter
  • Other: Methods (1) Apply Other: Methods filter
  • Protocols (1) Apply Protocols filter

Category

  • Publications (52) Apply Publications filter
HPV E6/E7 RNA In Situ Hybridization Signal Patterns as Biomarkers of Three-Tier Cervical Intraepithelial Neoplasia Grade

PLoS One. 2014 Mar 13;9(3):e91142

Evans MF, Peng Z, Clark KM, Adamson CSC, Ma XJ, Wu X, Wang H, Luo Y, Cooper K
PMID: 24625757 | DOI: 10.1371/journal.pone.0091142.eCollection2014.

Cervical lesion grading is critical for effective patient management. A three-tier classification (cervical intraepithelial neoplasia [CIN] grade 1, 2 or 3) based on H&E slide review is widely used. However, for reasons of considerable inter-observer variation in CIN grade assignment and for want of a biomarker validating a three-fold stratification, CAP-ASCCP LAST consensus guidelines recommend a two-tier system: low- or high-grade squamous intraepithelial lesions (LSIL or HSIL). In this study, high-risk HPV E6/E7 and p16 mRNA expression patterns in eighty-six CIN lesions were investigated by RNAscope chromogenic in situ hybridization (CISH). Specimens were also screened by immunohistochemistry for p16INK4a (clone E6H4), and by tyramide-based CISH for HPV DNA. HPV genotyping was performed by GP5+/6+ PCR combined with cycle-sequencing. Abundant high-risk HPV RNA CISH signals were detected in 26/32 (81.3%) CIN 1, 22/22 (100%) CIN 2 and in 32/32 (100%) CIN 3 lesions. CIN 1 staining patterns were typified (67.7% specimens) by abundant diffusely staining nuclei in the upper epithelial layers; CIN 2 lesions mostly (66.7%) showed a combination of superficial diffuse-stained nuclei and multiple dot-like nuclear and cytoplasmic signals throughout the epithelium; CIN 3 lesions were characterized (87.5%) by multiple dot-like nuclear and cytoplasmic signals throughout the epithelial thickness and absence/scarcity of diffusely staining nuclei (trend across CIN grades: P<0.0001). These data are consistent with productive phase HPV infections exemplifying CIN 1, transformative phase infections CIN 3, whereas CIN 2 shows both productive and transformative phase elements. Three-tier data correlation was not found for the other assays examined. The dual discernment of diffuse and/or dot-like signals together with the assay’s high sensitivity for HPV support the use of HPV E6/E7 RNA CISH as an adjunct test for deciding lesion grade when CIN 2 grading may be beneficial (e.g. among young women) or when ‘LSIL vs. HSIL’ assignment is equivocal.
HPV E6/E7 mRNA In Situ Hybridization in the Diagnosis of Cervical Low-grade Squamous Intraepithelial Lesions (LSIL)

Am J Surg Pathol.

2017 Nov 03

Mills AM, Coppock JD, Willis BC, Stoler MH.
PMID: 29112014 | DOI: 10.1097/PAS.0000000000000974

Cervical low-grade squamous intraepithelial lesions (LSIL) (aka cervical intraepithelial neoplasia, grade 1 [CIN1]) can present considerable diagnostic challenges and are associated with poor interobserver reproducibility and overdiagnosis. Furthermore, ancillary studies such as p16 immunohistochemistry have shown little utility in resolving the LSIL versus negative/reactive differential. Human papillomavirus (HPV) RNA in situ hybridization (ISH) has shown promise as a diagnostic aid in this setting, but has not been studied in a large case series. We herein investigate high-risk and low-risk HPV RNA ISH in 126 cervical biopsies originally diagnosed as LSIL/CIN1 and compare HPV RNA ISH results to expert-adjudicated morphologic diagnosis to assess whether this assay can help routine cases attain the existing "gold standard" of morphologic consensus diagnosis. We also assess whether this criterion standard can be further improved by integration of HPV RNA ISH results. A consensus diagnosis of intraepithelial lesion (CIN1) was confirmed in 61% of cases, whereas 57% were HPV RNA. HPV-RNA positivity was 84% sensitive and 86% specific for an expert-adjudicated diagnosis of CIN1. Conversely, consensus diagnosis was 90% sensitive and 78% specific for the presence of HPV RNA. Integrating RNA ISH into morphologic review led to further reclassification of 10% of cases, resulting in 95% sensitivity and 98% specificity of HPV RNA ISH for a CIN1 diagnosis and 98% sensitivity and 92% specificity of CIN1 for the presence of HPV RNA. These findings suggest that judicious use of HPV RNA ISH can improve the accuracy of LSIL/CIN1 diagnosis for morphologically ambiguous cases.

Novel In Situ Hybridization Assay for Chromogenic Single-Molecule Detection of Human Papillomavirus E6/E7 mRNA

Microbiology spectrum

2023 Feb 21

Rao, X;Zheng, L;Wei, K;Li, M;Jiang, M;Qiu, J;Zhou, Y;Ke, R;Lin, C;
PMID: 36809088 | DOI: 10.1128/spectrum.03896-22

RNA plays a vital role in the physiological and pathological processes of cells and tissues. However, RNA in situ hybridization applications in clinical diagnostics are still limited to a few examples. In this study, we developed a novel in situ hybridization assay for human papillomavirus (HPV) E6/E7 mRNA by taking advantage of specific padlock probing and rolling circle amplification, combined with chromogenic readout. We designed padlock probes for 14 types of high-risk HPV and demonstrated that E6/E7 mRNA could be visualized in situ as discrete dot-like signals using bright-field microscopy. Overall, the results are consistent with the clinical diagnostics lab's hematoxylin and eosin (H&E) staining and p16 immunohistochemistry test results. Our work thus shows the potential applications of RNA in situ hybridization for clinical diagnostics using chromogenic single-molecule detection, offering an alternative technical option to the current commercially available kit based on branched DNA technology. IMPORTANCE In situ detection of viral mRNA expression in tissue samples is of great value for pathological diagnosis to access viral infection status. Unfortunately, conventional RNA in situ hybridization assays lack sensitivity and specificity for clinical diagnostic purposes. Currently, the commercially available branched DNA technology-based single-molecule RNA in situ detection method offers satisfactory results. Here, we present our padlock probe- and rolling circle amplification-based RNA in situ hybridization assay for detecting HPV E6/E7 mRNA expression in formalin-fixed paraffin-embedded tissue sections, providing an alternative yet robust method for viral RNA in situ visualization that is also applicable to different types of diseases.
ER-positive endocervical adenocarcinoma mimicking endometrioid adenocarcinoma in morphology and immunohistochemical profile: A case report of application of HPV RNAscope detection

Medicine

2021 Apr 02

Chen, R;Qin, P;Luo, Q;Yang, W;Tan, X;Cai, T;Jiang, Q;Chen, H;
PMID: 33787580 | DOI: 10.1097/MD.0000000000024927

Usual-type endocervical adenocarcinoma (ECA), high-risk HPV associated, is the most common type of glandular carcinoma in the endocervix. Mucin-depleted usual-type ECA is 1 end of morphological lineage of usual-type ECA and morphologically may show endometrioid features, which could cause diagnostic challenge with uterine endometrioid adenocarcinoma (EEC) and primary endometrioid ECA, especially in the setting of small biopsy and endocervical curettage (ECC). A 37-year-old women presented with dyspareunia for 1 year, showing atypical glandular cell on a liquid-based Pap TCT examination and positive for HPV16 detection. ECC showed EEC in another hospital based on its "endometrioid" morphology and immunohistochemical profiles (ER/PR/PAX8 strongly positive, though p16 also strongly positive). The specimen of hysterectomy in our hospital displayed a lesion confined to the uterine cervix showing the same morphology and immunohistochemical profiles as ECC. Finally, we successfully performed HPV RNAscope and detected high-risk human papilloma virus (HPV) E6/E7 mRNA particles in tumor cells in situ, which warranted usual-type ECA with mucin-depleted feature, a rare deviation of usual-type of ECA. The patient underwent total hysterectomy with lymph node dissection. To date, 14 months after surgery, the patient is well without recurrence or distant metastasis, and undergoes regular reexamination. We report a rare case of mucin-depleted usual-type ECA showing overlapping morphological and immunohistochemical profiles with EEC. The pathological diagnosis was confirmed by high-risk HPV RNAscope detection which is superior than immunohistochemistry to identify usual-type ECA, warranting an important role in assisting the diagnosis of morphological vague cases.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?