Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for P16

ACD can configure probes for the various manual and automated assays for P16 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for P16 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (52)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove HPV E6/E7 filter HPV E6/E7 (51)
  • TBD (15) Apply TBD filter
  • HPV-HR18 (8) Apply HPV-HR18 filter
  • HPV18 (5) Apply HPV18 filter
  • HPV (5) Apply HPV filter
  • 18 (5) Apply 18 filter
  • 31 (5) Apply 31 filter
  • 33 (5) Apply 33 filter
  • HPV16 (4) Apply HPV16 filter
  • p16 (4) Apply p16 filter
  • 35 (4) Apply 35 filter
  • 52 (4) Apply 52 filter
  • HPV HR18 (3) Apply HPV HR18 filter
  • 39 (3) Apply 39 filter
  • 45 (3) Apply 45 filter
  • 51 (3) Apply 51 filter
  • 56 (3) Apply 56 filter
  • 58 (3) Apply 58 filter
  • 59 (3) Apply 59 filter
  • egfp (2) Apply egfp filter
  • HPV16/18 (2) Apply HPV16/18 filter
  • HPV HR7 (2) Apply HPV HR7 filter
  • E7 (2) Apply E7 filter
  • 26 (2) Apply 26 filter
  • HPV 16 (2) Apply HPV 16 filter
  • 53 (2) Apply 53 filter
  • 66 (2) Apply 66 filter
  • 68 (2) Apply 68 filter
  • 73 (2) Apply 73 filter
  • 82 (2) Apply 82 filter
  • CD34 (1) Apply CD34 filter
  • Vegfa (1) Apply Vegfa filter
  • MDM2 (1) Apply MDM2 filter
  • Cxcl1 (1) Apply Cxcl1 filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter
  • HPV52 (1) Apply HPV52 filter
  • HPV58 (1) Apply HPV58 filter
  • E6 (1) Apply E6 filter
  • IL-8 (1) Apply IL-8 filter
  • HER3 (1) Apply HER3 filter
  • Heregulin (1) Apply Heregulin filter
  • p16LUC (1) Apply p16LUC filter
  • p21 (1) Apply p21 filter
  • HPV-HR16 (1) Apply HPV-HR16 filter
  • HPV-16/18 (1) Apply HPV-16/18 filter
  • HR-HPV-18 (1) Apply HR-HPV-18 filter
  • HPV-31 (1) Apply HPV-31 filter
  • E6/E7 (1) Apply E6/E7 filter

Product

  • RNAscope 2.0 Assay (21) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (3) Apply RNAscope 2.5 LS Assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter

Research area

  • Cancer (52) Apply Cancer filter
  • HPV (48) Apply HPV filter
  • Infectious Disease (45) Apply Infectious Disease filter
  • Other: Methods (1) Apply Other: Methods filter
  • Protocols (1) Apply Protocols filter

Category

  • Publications (52) Apply Publications filter
Utility of high-risk HPV RNA chromogenic in situ hybridization in cytology smears and liquid-based preparations from metastatic head and neck squamous cell carcinoma

Cancer cytopathology

2022 Nov 09

Velez Torres, JM;Alkathery, T;Tjendra, Y;Zuo, Y;Kerr, DA;Gomez-Fernandez, C;
PMID: 36350307 | DOI: 10.1002/cncy.22659

High-risk human papillomavirus (HR-HPV) status is critical for the diagnosis, prognosis, and treatment of patients with oropharyngeal squamous cell carcinoma (OPSCC). Patients often present with enlarged cervical nodes, and fine-needle aspiration cytology (FNAC) is frequently the initial diagnostic procedure. Although p16 is the most widely used surrogate marker, problems with interpretation can limit its utility in FNAC. HR-HPV RNA in situ hybridization (ISH) has emerged as a specific way to assess HPV status on cell block preparations of cervical nodes. The authors evaluated the utility of HR-HPV ISH in conventional smears and liquid-based cytology (LBC) preparations of metastatic head and neck squamous cell carcinoma (SCC).Thirty-one aspirates of proven, HPV-related SCC (confirmed by p16 and/or HR-HPV ISH in corresponding surgical specimens) were selected. Ten aspirates of HPV-negative SCC were also retrieved. HR-HPV ISH was performed on 27 smears and 14 LBC preparations. All results were scored as positive, equivocal, or negative.Eighty-four percent of metastatic, HPV-related SCCs were positive for HR-HPV RNA ISH, with high number of signals (n = 19) and low number of signals (n = 7), whereas five HPV-related SCCs were equivocal. All metastatic, HPV-negative SCCs were negative for HR-HPV ISH.HR-HPV ISH can be reliably performed on smears or LBC preparations, particularly when cell blocks are unavailable or paucicellular. Results were easy to interpret when high numbers of signals were present but were challenging in aspirates with low or rare number of signals. The current study suggests that HR-HPV ISH could be used as the initial testing modality for determining HPV status in FNAC specimens of metastatic SCC.
Human Papillomavirus-Associated Oral Cavity Squamous Cell Carcinoma: An Entity with Distinct Morphologic and Clinical Features

Head and neck pathology

2022 Jul 08

Lewis, JS;Smith, MH;Wang, X;Tong, F;Mehrad, M;Lang-Kuhs, KA;
PMID: 35802245 | DOI: 10.1007/s12105-022-01467-0

HPV-associated oral cavity squamous cell carcinoma (SCC) is not well-characterized in the literature, and also has a clinical significance that is poorly understood.We gathered a cohort of oral cavity (OC) SCC with nonkeratinizing morphology, either in the invasive or in situ carcinoma (or both), tested for p16 by immunohistochemistry and high risk HPV E6/E7 mRNA by RTPCR (reference standard for transcriptionally-active high risk HPV) and gathered detailed morphologic and clinicopathologic data.Thirteen patients from two institutions were proven to be HPV-associated by combined p16 and high risk HPV mRNA positivity. All 13 patients (100%) were males, all were heavy smokers (average 57 pack/year), and most were active drinkers (9/11 or 81.8%). All 13 (100%) involved the tongue and/or floor of mouth. All had nonkeratinizing features, but maturing squamous differentiation varied widely (0-90%; mean 37.3%). Nonkeratinizing areas had high N:C ratios and larger nests, frequently with pushing borders, and minimal (or no) stromal desmoplasia. The carcinoma in situ, when present, was Bowenoid/nonkeratinizing with cells with high N:C ratios, full thickness loss of maturation, and abundant apoptosis and mitosis. HPV was type 16 in 11 patients (84.6%) and type 33 in two (15.4%). Nine patients had treatment data available. These underwent primary surgical resection with tumors ranging from 1.6 to 5.2 cm. Most had bone invasion (6/9-66.7% were T4a tumors), and most (6/9-66.7%) had extensive SCC in situ with all 6 of these patients having final margins positive for in situ carcinoma.HPV-associated OCSCC is an uncommon entity that shows certain distinct clinical and pathologic features. Recognition of these features may help pathologic diagnosis and could potentially help guide clinical management.
Defining the better algorithm for the accurate identification of HPV status among oropharyngeal squamous-cell carcinoma. Results from a pilot study

WCRJ 2015; 2 (1): e497

Gloghini A, Volpi CC, Gualeni AV, Cortellazzi B, Perrone F, Pilotti S.
PMID: //www.wcrj.net/wp-content/uploads/2015/04/WCRJ-2015-2-1-e497-Gloghini-WCRJ.pdf

Abstract: Background: The recognition of tumor infection by human papilloma virus (HPV) in oropharyngeal squamous-cell carcinoma (OSCC) is emerging as a valid biomarker to more accurate selection of patients for specific treatment, surveillance and tumor staging. To this aim, the HPV detection strategy in OSCC must dissect between HPV that is acting as a driver of malignant transformation, and transcriptionally silent virus involved in productive infection. The aim of this study is to define the better method for the accurate identification of HPV status among OSCC. Patients and Methods: Thirty-six patients were selected for HPV status assessment combining different methods, such as immunohistochemistry (IHC) for p16, in-situ hybridization (ISH) for high risk (HR)-HPV DNA and HR-HPV E6/E7 mRNA along with real-time PCR of HPV16 E6/E7 mRNA. All these cases were originally classified as HPV negative by DNA-based ISH but p16 positive by the IHC. Results: Twenty-six cases showed concordance between methods; whereas, nine cases resulted negative for HPV E6/E7 mRNA RT-PCR but positive for HPV E6/E7 mRNA ISH. Conclusion: By considering that the bright field HPV E6/E7 mRNA ISH could be more sensitive than mRNA-based real-time RT-PCR, and that it provides the precise identification of transcriptionally active HPV infected cells, a randomized analysis to validate the robustness of this preliminary assay will be undertaken.
Human papillomavirus testing in diagnostic head and neck histopathology

Diagnostic Histopathology

Moutasim KA, Robinson M, Thavaraj S.
PMID: 10.1016/j.mpdhp.2015.02.002

Assessment of human papillomavirus (HPV) status is a requirement for the diagnosis of HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) and metastatic squamous cell carcinoma in cervical lymph nodes where the location of the primary neoplasm is unknown. Within the diagnostic histopathology laboratory, there should be a validated and reproducible HPV testing strategy that can provide HPV status within a reasonable timeframe to inform patient care. Although these requirements are recognized by the head and neck oncology community, there is no internationally accepted standard for HPV testing. A two-tiered approach incorporating p16 immunohistochemistry with specific HPV testing by DNA in situ hybridization is a pragmatic way of providing HPV testing in clinical practice. A novel RNA in situ hybridization methodology targeting E6 and E7 mRNA has been validated and is likely to be available as an in vitro diagnostic device soon. This review will outline the current concepts around the diagnosis of HPV-associated head and neck SCC and suggest a diagnostic algorithm that can be instituted in most diagnostic cellular pathology laboratories.
HPV-related oropharyngeal squamous cell carcinomas: a comparison between three diagnostic approaches.

Am J Otolaryngol. 2014 Jan-Feb;35(1):25-32.

Melkane AE, Mirghani H, Aupérin A, Saulnier P, Lacroix L, Vielh P, Casiraghi O, Griscelli F, Temam S.
PMID: 24112760 | DOI: 10.1016/j.amjoto.2013.08.007.

PURPOSE: HPV-related oropharyngeal squamous cell carcinomas clearly represent a growing entity in the head and neck with distinct carcinogenesis, clinico-pathological presentation and survival profile. We aimed to compare the HPV prevalence rates and clinico-pathological correlations obtained with three distinct commonly used HPV detection methods. MATERIALS AND METHODS: p16-immunohistochemistry (IHC), HPV DNA viral load by real-time PCR (qPCR), and HPV genotyping by a reverse hybridization-based line probe assay (INNO-LiPA) were performed on pretreatment formalin-fixed paraffin-embedded tumor samples from 46 patients treated for single primary oropharyngeal carcinomas. RESULTS: Twenty-eight patients (61%) had a p16 overexpression in IHC. Twenty-nine patients (63%) harbored HPV DNA on qPCR. Thirty-four patients (74%) harbored HPV DNA on INNO-LiPA. The concordance analysis revealed a good agreement between both HPV DNA detection methods (κ=0.65); when both tests were positive, the depicted HPV subtypes were always concordant (HPV16 in 27 cases, HPV18 in 1 case). Agreement was moderate between IHC and qPCR (κ=0.59) and fair between IHC and INNO-LiPA (κ=0.22). CONCLUSIONS: Certain highly sensitive methods are able to detect the mere presence of HPV without any carcinogenetic involvement while other more specific tests provide proof of viral transcriptional activity and thus evidence of clinically relevant infections. The use of a stepwise approach allows reducing false positives; p16-immunostaining seems to be an excellent screening test and in situ hybridization may overcome some of the PCR limitations.
Extensive HPV-Related Carcinoma In Situ of the Upper Aerodigestive Tract with ‘Nonkeratinizing’Histologic Features.

Head and neck pathology, 1–7.

Chernock RD, Nussenbaum B, Thorstad WL, Luo Y, Ma XJ, El-Mofty SK, Lewis JS Jr (2013).
PMID: 24151062.

Over the past several decades, it has become clear that human papillomavirus (HPV) is important for the development and progression of many head and neck squamous cell carcinomas, particularly those arising in the oropharyngeal tonsillar crypts. Yet, our understanding of HPV's role in premalignant squamous lesions remains relatively poor. This is in part because premalignant lesions of the oropharyngeal tonsillar crypt tissue, where most HPV-related carcinomas arise, are difficult if not impossible to identify. Recent evidence does suggest a role for HPV in a subset of premalignant lesions of the surface epithelium, especially the oral cavity, despite the rarity of HPV-related invasive squamous cell carcinomas at this site. Furthermore, these HPV-related oral cavity dysplasias appear to have unique, bowenoid histologic features described as 'basaloid' with full-thickness loss of squamous maturation, mitotic figures and apoptosis throughout. Here, we present a unique case of an HPV-related premalignant lesion (squamous cell carcinoma in situ) extensively involving the surface epithelium of the oral cavity, oropharynx and larynx that had 'nonkeratinizing' histologic features typical of HPV-related invasive squamous cell carcinoma. This case was strongly p16 positive by immunohistochemistry and harbored transcriptionally active HPV as demonstrated by E6/E7 RNA in situ hybridization. Furthermore, the patient had an excellent response to radiation treatment.
Validation of a novel diagnostic standard in HPV-positive oropharyngeal squamous cell carcinoma.

British journal of cancer, 108(6):1332–1339.

Schache AG, Liloglou T, Risk JM, Jones TM, Ma XJ, Wang H, Bui S, Luo Y, Sloan P, Shaw RJ, Robinson M (2013).
PMID: 23412100 | DOI: 10.1038/bjc.2013.63.

BACKGROUND: Human papillomavirus (HPV) testing in oropharyngeal squamous cell carcinoma (OPSCC) is now advocated. Demonstration of transcriptionally active high-risk HPV (HR-HPV) in fresh tumour tissue is considered to be the analytical 'gold standard'. Clinical testing has focused on formalin-fixed paraffin-embedded (FFPE) tissue at the expense of sensitivity and specificity. Recently, a novel RNA in situ hybridisation test (RNAscope) has been developed for the detection of HR-HPV in FFPE tissue; however, validation against the 'gold standard' has not been reported. METHODS: A tissue microarray comprising FFPE cores from 79 OPSCC was tested using HR-HPV RNAscope. Analytical accuracy and prognostic capacity were established by comparison with the reference test; qRT-PCR for HR-HPV on matched fresh-frozen samples. RESULTS: High-risk HPV RNAscope had a sensitivity and specificity of 97 and 93%, respectively, against the reference test. Kaplan-Meier estimates of disease-specific survival (DSS, P=0.001) and overall survival (OS, P<0.001) by RNAscope were similar to the reference test (DSS, P=0.003, OS, P<0.001) and at least, not inferior to p16 immunohistochemistry +/- HR-HPV DNA-based tests. CONCLUSION: HR-HPV RNAscope demonstrates excellent analytical and prognostic performance against the 'gold standard'. These data suggest that the test could be developed to provide the 'clinical standard' for assigning a diagnosis of HPV-related OPSCC.
Transcriptionally‐active high‐risk human papillomavirus is rare in oral cavity and laryngeal/hypopharyngeal squamous cell carcinomas–a tissue microarray study utilizing E6/E7 mRNA in situ hybridization.

Histopathology. May; 60(6):982-91.

Lewis JS Jr1, Ukpo OC, Ma XJ, Flanagan JJ, Luo Y, Thorstad WL, Chernock RD (2012)
PMID: 22360821 | DOI: 10.1111/j.1365-2559.2011.04169.x.

AIMS: Human papillomavirus is well established in oropharyngeal squamous cell carcinoma as both causative and prognostic, but its significance in non-oropharyngeal tumours is unclear. In particular, the significance of finding viral DNA is not known. We sought to evaluate nonoropharyngeal squamous cell carcinomas for transcriptionally-active human papillomavirus and to compare this with the presence of viral DNA. METHODS: We evaluated an 87 patient tissue microarray cohort of oral cavity and laryngeal/hypopharyngeal squamous cell carcinomas for high risk human papillomavirus DNA and E6 and E7 mRNA transcripts by in situ hybridization, and for p16 expression by immunohistochemistry. RESULTS: We found only two of the 73 (2.7%) evaluable cases to harbour transcriptionally-active human papillomavirus. Both of these tumours were from the larynx, one was positive for human papillomavirus DNA by in situ hybridization, and both were extensively positive for p16. All oral cavity and hypopharyngeal tumours were negative for human papillomavirus. CONCLUSIONS: Transcriptionally-active human papillomavirus appears to be rare in laryngeal, hypopharyngeal, and oral cavity squamous cell carcinomas. As such, it appears unlikely to be a 'driver' or to be clinically significant in most established tumours.
Ciliated HPV-related Carcinoma: A Well-differentiated Form of Head and Neck Carcinoma That Can Be Mistaken for a Benign Cyst.

Am J Surg Pathol.

2015 Oct 17

Bishop JA, Westra WH.
PMID: 26457358 | DOI: 10.1097/PAS.0000000000000521.

Although human papillomavirus (HPV)-related oropharyngeal carcinomas (HPV-OPCs) are generally regarded as "poorly differentiated," they actually maintain a close resemblance to the lymphoepithelium of the tonsillar crypts from which they arise: they are basaloid, exhibit minimal keratinization, and are often permeated by lymphocytes. In rare cases, the presence of cilia in a primary HPV-OPC and their persistence in lymph node metastasis can confound the distinction between a benign and malignant process. Three cases of ciliated HPV-OPCs were identified from the archives of The Johns Hopkins Head and Neck Pathology consultation service. HPV status was determined using p16 immunohistochemistry and high-risk HPV in situ hybridization. All 3 patients presented with a cystic lymph node metastasis without a known primary carcinoma. One metastasis was originally diagnosed as a branchial cleft cyst only to regionally recur 7 years later. In 2 cases, a primary HPV-OPC was found in the tonsil. The carcinomas exhibited both nonkeratinizing squamous epithelium and cystic/microcystic spaces lined by ciliated columnar cells. Both the squamous and ciliated cells were HPV positive. This report draws attention to a novel variant of HPV-related head and neck cancer that exhibits ciliated columnar cells. This variant challenges prevailing notions that: (1) HPV-OPCs are uniformly poorly differentiated cancers; (2) cilia are an infallible feature of benignancy; and (3) presence of cilia is a reliable criterion for establishing branchial cleft origin when dealing with cystic lesions of the lateral neck.

Concurrent human papillomavirus-positive squamous cell carcinoma of the oropharynx in a married couple

Case Reports in Otolaryngology

2016 May 25

Brobst T, García J, Rowe Price KA, Gao G, Smith DI, Price D.
PMID: - | DOI: -

Abstract
Background:

Although alcohol and tobacco use are known risk factors for development of squamous cell carcinoma in the head and neck, human papillomavirus (HPV) has been increasingly associated with this group of cancers. We describe the case of a married couple who presented with HPV-positive oropharynx squamous cell carcinoma within two months of each other.

Methods:

Tumor biopsies were positive for p16 and high-risk HPV in both patients. Sanger sequencing showed a nearly identical HPV16 strain in both patients. Both patients received chemoradiation, and one  patient also underwent transoral robotic tongue base resection with bilateral neck dissection.

Results:

Both patients showed no evidence of recurrent disease on follow-up PET imaging.

Conclusions:

New head and neck symptoms should be promptly evaluated in the partner of a patient with known HPV-positive oropharynx cancer. This case expands the limited current literature on concurrent presentation of HPV-positive oropharynx squamous cell carcinoma in couples. 

Epstein‐Barr virus and human papillomaviruses as favorable prognostic factors in nasopharyngeal carcinoma: A nationwide study in Finland.

Head Neck. 2018 Dec 14.

2018 Dec 14

Ruuskanen M, Irjala H, Minn H, Vahlberg T, Randen-Brady R, Hagström J, Syrjänen S, Leivo I.
PMID: 30549170 | DOI: 10.1002/hed.25450

Abstract BACKGROUND: Nasopharyngeal carcinoma (NPC) is related to Epstein-Barr virus (EBV) in endemic areas; however, the role of viruses in nonendemic countries is unclear. Our nationwide study investigated the prevalence and prognostic significance of EBV and human papillomaviruses (HPVs) in Finnish NPC tumors. METHODS: We analyzed samples from 150 patients diagnosed between 1990 and 2009. Viral status was determined using EBV and HPV RNA in situ hybridizations, and p16 immunohistochemistry. Patient and treatment characteristics were obtained from patient records. RESULTS: In our white patient cohort, 93 of 150 (62%) patients were EBV-positive and 21/150 (14%) patients were HPV-positive with no coinfections. Thirty-six (24%) tumors were negative for both viruses. The 5-year disease-specific survival for patients with EBV-positive, HPV-positive, and EBV/HPV-negative tumors was 69%, 63%, and 39%, respectively. In multivariable-adjusted analysis, overall survival was better among patients with EBV-positive (P = .005) and HPV-positive (P = .03) tumors compared to patients with EBV/HPV-negative tumors. CONCLUSIONS: In our low-incidence population, EBV and HPV are important prognostic factors for NPC.
Transcriptional Activity of HPV in Inverted Papilloma Demonstrated by In Situ Hybridization for E6/E7 mRNA.

Otolaryngol Head Neck Surg. 2015 Feb 27.

Stoddard DG Jr, Keeney MG, Gao G, Smith DI, García JJ, O'Brien EK.
PMID: 25724573 | DOI: 0194599815571285.

OBJECTIVE: Assess human papilloma virus (HPV) transcriptional activity in inverted Schneiderian papillomas (IPs). STUDY DESIGN: Case series with chart review. SETTING: Academic tertiary care center. SUBJECTS AND METHODS: Retrospective clinicopathologic review of 19 cases of IP in patients undergoing surgical excision from 1995 to 2013 at Mayo Clinic in Rochester, Minnesota. Surgical pathology archival material was histopathologically reviewed using hematoxylin and eosin-stained slides. Formalin-fixed, paraffin-embedded material from each case was evaluated for p16 expression using immunohistochemistry as well as HPV DNA and E6/E7 messenger RNA (mRNA) transcription using polymerase chain reaction (PCR) and in situ hybridization (via RNAscope technology), respectively. RESULTS: Eight patients were female (42%), with an average age of 53 years (range, 23-82 years). Three demonstrated malignancy, and 5 subsequently recurred. Average follow-up was 49 months (range, 0-200 months), and 1 patient died from squamous cell carcinoma arising from the IP. RNAscope detected HPV mRNA transcripts exclusively within IP in 100% of cases; however, in 11 patients (58%), less than 1% of cells exhibited transcriptional activity. Only 2 of 19 cases (11%) demonstrated mRNA activity in 50% or more cells. HPV DNA was detected in only 2 specimens by PCR. CONCLUSIONS: This study reveals wide prevalence but limited transcriptional activity of HPV in IP. No correlation between HPV transcriptional activity and progression, recurrence, or malignant transformation was identified. These data suggest that transcription of HPV may contribute to the pathogenesis of IP, but prospective data are needed to definitively demonstrate this connection. These results also suggest that RNAscope may be more sensitive than PCR in detecting HPV activity in IP.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?