ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Breast Cancer Res.
2017 May 30
Jiang Z, Slater CM, Zhou Y, Devarajan K, Ruth KJ, Li Y, Cai KQ, Daly M, Chen X.
PMID: 28558830 | DOI: 10.1186/s13058-017-0853-2
Oncotarget. 2015 Feb 28;6(6):4036-50.
Böttcher R, Hoogland AM, Dits N, Verhoef EI, Kweldam C, Waranecki P, Bangma CH, van Leenders GJ, Jenster G.
PMID: 25996368 | DOI: 10.1371/journal.pone.0127300.
Sci Rep.
2017 Sep 20
Katayama H, Tamai K, Shibuya R, Nakamura M, Mochizuki M, Yamaguchi K, Kawamura S, Tochigi T, Sato I, Okanishi T, Sakurai K, Fujibuchi W, Arai Y, Satoh K.
PMID: 28931862 | DOI: 10.1038/s41598-017-12191-z
Renal cell carcinoma (RCC) is one of the most lethal urologic cancers. About one-third of RCC patients already have distal metastasis at the time of diagnosis. There is growing evidence that Hox antisense intergenic RNA (HOTAIR) plays essential roles in metastasis in several types of cancers. However, the precise mechanism by which HOTAIR enhances malignancy remains unclear, especially in RCC. Here, we demonstrated that HOTAIR enhances RCC-cell migration by regulating the insulin growth factor-binding protein 2 (IGFBP2) expression. HOTAIR expression in tumors was significantly correlated with nuclear grade, lymph-node metastasis, and lung metastasis. High HOTAIR expression was associated with a poor prognosis in both our dataset and The Cancer Genome Atlas dataset. Migratory capacity was enhanced in RCC cell lines in a HOTAIR-dependent manner. HOTAIR overexpression accelerated tumorigenicity and lung metastasis in immunodeficient mice. Microarray analysis revealed that IGFBP2 expression was upregulated in HOTAIR-overexpressing cells compared with control cells. The enhanced migration activity of HOTAIR-overexpressing cells was attenuated by IGFBP2 knockdown. IGFBP2 and HOTAIR were co-expressed in clinical RCC samples. Our findings suggest that the HOTAIR-IGFBP2 axis plays critical roles in RCC metastasis and may serve as a novel therapeutic target for advanced RCC.
Pathol Res Pract.
2019 May 24
Niu L, Zhou Y, Zhang W, Ren Y.
PMID: 31201066 | DOI: 10.1016/j.prp.2019.152470
Breast cancer (BC) is one of the primary tumors with high incidence in women. The purpose of this study was to investigate the role of LINC00473 and underlying mechanisms in BC. Expression pattern of LINC00473 was analyzed using qRT-PCR (quantitative real-time polymerase chain reaction) assays in BC tissues and cells. Overexpression or knockdown of LINC00473 in vitro and functional experiments were performed to study its effects on BC cells. Target prediction, luciferase assays, RNA fluorescence in situ hybridization and RNA immunoprecipitation were used to verify the role of LINC00473 as a competing endogenous RNA. The impact of LINC00473 on tumor growth was also evaluated using a xenograft model. In our study, we found that LINC00473 was highly expressed in BC tissues and cells, and the elevated expression was correlated with shorter overall survival in patients with BC. Furthermore, knockdown of LINC00473 significantly inhibited the capacity of proliferation, invasion and migration of BC cells. Animal experiment suggested that silencing LINC00473 could significantly inhibit the tumor growth. Following experiments revealed that LINC00473 may function as a competing endogenous RNA to regulate the expression of Mitogen-Activated Protein Kinase 1 (MAPK1) through competition for miR-198. Thus, increased expression of LINC00473 in breast cancer tissues is linked to poor prognosis. LINC00473 may function as an endogenous completive RNA by sponging miR-198 to regulate MAPK1 expression. Findings of our study contributed to the basis for further exploring the application of LINC00473 as a prognostic and diagnostic biomarker.
Gastroenterology
2023 May 12
Ravillah, D;Kieber-Emmons, AL;Singh, S;BETRNet Consortium, ;Keerthy, K;Blum, AE;Guda, K;
PMID: 37182784 | DOI: 10.1053/j.gastro.2023.04.037
Molecular cancer
2022 Mar 22
Fletcher, CE;Deng, L;Orafidiya, F;Yuan, W;Lorentzen, MPGS;Cyran, OW;Varela-Carver, A;Constantin, TA;Leach, DA;Dobbs, FM;Figueiredo, I;Gurel, B;Parkes, E;Bogdan, D;Pereira, RR;Zhao, SG;Neeb, A;Issa, F;Hester, J;Kudo, H;Liu, Y;Philippou, Y;Bristow, R;Knudsen, K;Bryant, RJ;Feng, FY;Reed, SH;Mills, IG;de Bono, J;Bevan, CL;
PMID: 35317841 | DOI: 10.1038/s44161-022-00042-8
Journal of Investigative Dermatology
2021 Oct 01
Li, C;Mahapatra, K;Sun, C;Lapins, J;Sonkoly, E;Kähäri, V;Pivarcsi, A;
| DOI: 10.1016/j.jid.2021.08.261
Vet Pathol. 2015 Jul 27.
Gaynor AM, Zhu KW, Cruz FN Jr, Affolter VK, Pesavento PA.
PMID: 26215759 | DOI: 0300985815594852
RNA Biol. 2015 May 27:0.
Xing Z, Park PK, Lin C, Yang L.
PMID: 26023097 | DOI: dev.115261.
Nat Cell Biol.
2016 Jan 11
Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, Wei Y, Ma G, Park PK, Zhou J, Zhou Y, Hu Z, Zhou Y, Marks JR, Liang H, Hung MC, Lin C, Yang L.
PMID: 26751287 | DOI: 10.1038/ncb3295
Although long non-coding RNAs (lncRNAs) predominately reside in the nucleus and exert their functions in many biological processes, their potential involvement in cytoplasmic signal transduction remains unexplored. Here, we identify a cytoplasmic lncRNA, LINK-A (long intergenic non-coding RNA for kinase activation), which mediates HB-EGF-triggered, EGFR:GPNMB heterodimer-dependent HIF1α phosphorylation at Tyr 565 and Ser 797 by BRK and LRRK2, respectively. These events cause HIF1α stabilization, HIF1α-p300 interaction, and activation of HIF1α transcriptional programs under normoxic conditions. Mechanistically, LINK-A facilitates the recruitment of BRK to the EGFR:GPNMB complex and BRK kinase activation. The BRK-dependent HIF1α Tyr 565 phosphorylation interferes with Pro 564 hydroxylation, leading to normoxic HIF1α stabilization. Both LINK-A expression and LINK-A-dependent signalling pathway activation correlate with triple-negative breast cancer (TNBC), promoting breast cancer glycolysis reprogramming and tumorigenesis. Our findings illustrate the magnitude and diversity of cytoplasmic lncRNAs in signal transduction and highlight the important roles of lncRNAs in cancer.
J Clin Invest.
2016 May 03
Chen Z, Li JL, Lin S, Cao C, Gimbrone NT, Yang R, Fu DA, Carper MB, Haura EB, Schabath MB, Lu J, Amelio AL, Cress WD, Kaye FJ, Wu L.
PMID: 27140397 | DOI: 10.1172/JCI85250.
The LKB1 tumor suppressor gene is frequently mutated and inactivated in non-small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP-responsive element-binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC.
Neoplasia.
2016 Aug 31
Shukla S, Zhang X, Niknafs YS, Xiao L, Mehra R, Cieślik M, Ross A, Schaeffer E, Malik B, Guo S, Freier SM, Bui HH, Siddiqui J, Jing X, Cao X, Dhanasekaran SM, Feng FY, Chinnaiyan AM, Malik R.
PMID: 27566105 | DOI: 10.1002/cne.24116
Rapid advances in the discovery of long noncoding RNAs (lncRNAs) have identified lineage- and cancer-specific biomarkers that may be relevant in the clinical management of prostate cancer (PCa). Here we assembled and analyzed a large RNA-seq dataset, from 585 patient samples, including benign prostate tissue and both localized and metastatic PCa to discover and validate differentially expressed genes associated with disease aggressiveness. We performed Sample Set Enrichment Analysis (SSEA) and identified genes associated with low versus high Gleason score in the RNA-seq database. Comparing Gleason 6 versus 9+ PCa samples, we identified 99 differentially expressed genes with variable association to Gleason grade as well as robust expression in prostate cancer. The top-ranked novel lncRNA PCAT14, exhibits both cancer and lineage specificity. On multivariate analysis, low PCAT14 expression independently predicts for BPFS (P=.00126), PSS (P=.0385), and MFS (P=.000609), with trends for OS as well (P=.056). An RNA in-situ hybridization (ISH) assay for PCAT14 distinguished benign vs malignant cases, as well as high vs low Gleason disease. PCAT14 is transcriptionally regulated by AR, and endogenous PCAT14 overexpression suppresses cell invasion. Thus, Using RNA-sequencing data we identify PCAT14, a novel prostate cancer and lineage-specific lncRNA. PCAT14 is highly expressed in low grade disease and loss of PCAT14 predicts for disease aggressiveness and recurrence.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com