Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LONG

ACD can configure probes for the various manual and automated assays for LONG for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for Long gene.

  • RNA expression of long gene in Human Colorectal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Gastric cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human Lung cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of long gene in Human ovarian cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Expression of long in Human Prostate cancer sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for Long (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (44)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • MALAT1 (4) Apply MALAT1 filter
  • H19 (3) Apply H19 filter
  • LINC00473 (3) Apply LINC00473 filter
  • HOTAIR (2) Apply HOTAIR filter
  • UCA1 (2) Apply UCA1 filter
  • SChLAP1 (2) Apply SChLAP1 filter
  • RAD51-AS1 (2) Apply RAD51-AS1 filter
  • Alpl (1) Apply Alpl filter
  • COL3A1 (1) Apply COL3A1 filter
  • ICAM1 (1) Apply ICAM1 filter
  • MMP13 (1) Apply MMP13 filter
  • GUCA2A (1) Apply GUCA2A filter
  • HOTTIP (1) Apply HOTTIP filter
  • Vegfa (1) Apply Vegfa filter
  • LINC-ROR (1) Apply LINC-ROR filter
  • BCAR4 (1) Apply BCAR4 filter
  • col10a1 (1) Apply col10a1 filter
  • KCNQ1OT1 (1) Apply KCNQ1OT1 filter
  • CARTPT (1) Apply CARTPT filter
  • Runx2 (1) Apply Runx2 filter
  • Dmbt1 (1) Apply Dmbt1 filter
  • EGFR-AS1 (1) Apply EGFR-AS1 filter
  • Cemip (1) Apply Cemip filter
  • BPV1 (1) Apply BPV1 filter
  • BPV2 (1) Apply BPV2 filter
  • EPCAT2F176 (1) Apply EPCAT2F176 filter
  • EPCAT4R966 (1) Apply EPCAT4R966 filter
  • Pnky (1) Apply Pnky filter
  • OLFM4 (1) Apply OLFM4 filter
  • LINK-A (1) Apply LINK-A filter
  • BC062296 (1) Apply BC062296 filter
  • lnc13 (1) Apply lnc13 filter
  • LncND (1) Apply LncND filter
  • ONECUT2 (1) Apply ONECUT2 filter
  • MAYA (1) Apply MAYA filter
  • LincIN (1) Apply LincIN filter
  • Lnc-BM (1) Apply Lnc-BM filter
  • YIYA (1) Apply YIYA filter
  • CamK-A (1) Apply CamK-A filter
  • LincK (1) Apply LincK filter
  • RP11-89G4 (1) Apply RP11-89G4 filter
  • AGPG (1) Apply AGPG filter
  • MIR4435-2HG (1) Apply MIR4435-2HG filter
  • IFITM4P (1) Apply IFITM4P filter
  • T376626  (1) Apply T376626  filter
  • mIl21-AS1 (1) Apply mIl21-AS1 filter
  •  LINC01534 (1) Apply  LINC01534 filter

Product

  • (-) Remove RNAscope 2.0 Assay filter RNAscope 2.0 Assay (44)

Research area

  • Cancer (30) Apply Cancer filter
  • lncRNA (30) Apply lncRNA filter
  • LncRNAs (3) Apply LncRNAs filter
  • Other (3) Apply Other filter
  • Neuroscience (2) Apply Neuroscience filter
  • Stem Cells (2) Apply Stem Cells filter
  • Developmental (1) Apply Developmental filter
  • Eyes (1) Apply Eyes filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammation (1) Apply Inflammation filter
  • Lnc (1) Apply Lnc filter
  • Metabolic (1) Apply Metabolic filter

Category

  • Publications (44) Apply Publications filter
High expression of HOXA13 correlates with poorly differentiated hepatocellular carcinomas and modulates sorafenib response in in vitro models.

Lab Invest.

2017 Oct 16

Quagliata L, Quintavalle C, Lanzafame M, Matter MS, Novello C, di Tommaso L, Pressiani T, Rimassa L, Tornillo L, Roncalli M, Cillo C, Pallante P, Piscuoglio S, Ng CK, Terracciano LM.
PMID: 29035381 | DOI: 10.1038/labinvest.2017.107

Hepatocellular carcinoma (HCC) represents the fifth and ninth cause of mortality among male and female cancer patients, respectively and typically arises on a background of a cirrhotic liver. HCC develops in a multi-step process, often encompassing chronic liver injury, steatosis and cirrhosis eventually leading to the malignant transformation of hepatocytes. Aberrant expression of the class I homeobox gene family (HOX), a group of genes crucial in embryogenesis, has been reported in a variety of malignancies including solid tumors. Among HOX genes, HOXA13 is most overexpressed in HCC and is known to be directly regulated by the long non-coding RNA HOTTIP. In this study, taking advantage of a tissue microarray containing 305 tissue specimens, we found that HOXA13 protein expression increased monotonically from normal liver to cirrhotic liver to HCC and that HOXA13-positive HCCs were preferentially poorly differentiated and had fewer E-cadherin-positive cells. In two independent cohorts, patients with HOXA13-positive HCC had worse overall survival than those with HOXA13-negative HCC. Using HOXA13 immunohistochemistry and HOTTIP RNA in situ hybridization on consecutive sections of 16 resected HCCs, we demonstrated that HOXA13 and HOTTIP were expressed in the same neoplastic hepatocyte populations. Stable overexpression of HOXA13 in liver cancer cell lines resulted in increased colony formation on soft agar and migration potential as well as reduced sensitivity to sorafenib in vitro. Our results provide compelling evidence of a role for HOXA13 in HCC development and highlight for the first time its ability to modulate response to sorafenib.

CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells

Oncogene.

2018 Jan 22

Chen Z, Lin S, Li JL, Ni W, Guo R, Lu J, Kaye FJ, Wu L.
PMID: 29353885 | DOI: 10.1038/s41388-017-0104-0

Mucoepidermoid carcinoma (MEC) arises in many glandular tissues and contributes to the most common malignant salivary gland cancers. MEC is specifically associated with a unique t(11;19) translocation and the resulting CRTC1-MAML2 fusion is a major oncogenic driver for MEC initiation and maintenance. However, the molecular basis underlying the CRTC1-MAML2 oncogenic functions remains elusive. Through gene expression profiling analysis, we observed that LINC00473, a long non-coding RNA (lncRNA), was the top down-regulated target in CRTC1-MAML2-depleted human MEC cells. LncRNAs belong to a new class of non-coding RNAs with emerging roles in tumorigenesis and progression, but remain poorly characterized. In this study, we investigated the role of LINC00473 in mediating CRTC1-MAML2 oncogenic activity in human MEC. We found that LINC00473 transcription was significantly induced in human CRTC1-MAML2-positive MEC cell lines and primary MEC tumors, and was tightly correlated with the CRTC1-MAML2 RNA level. LINC00473 induction was dependent on the ability of CRTC1-MAML2 to activate CREB-mediated transcription. Depletion of LINC00473 significantly reduced the proliferation and survival of human MEC cells in vitro and blocked the in vivo tumor growth in a human MEC xenograft model. RNA in situ hybridization analysis demonstrated a predominantly nuclear localization pattern for LINC00473 in human MEC cells. Furthermore, gene expression profiling revealed that LINC00473 depletion resulted in differential expression of genes important in cancer cell growth and survival. LINC00473 likely regulates gene expression in part through its ability to bind to a cAMP signaling pathway component NONO, enhancing the ability of CRTC1-MAML2 to activate CREB-mediated transcription. Our overall results demonstrate that LINC00473 is a downstream target and an important mediator of the CRTC1-MAML2 oncoprotein. Therefore, LINC00473 acts as a promising biomarker and therapeutic target for human CRTC1-MAML2-positive MECs.

UCA1 overexpression is associated with less aggressive subtypes of bladder cancer

Oncol Rep. 2018 Nov;40(5):2497-2506.

2018 Sep 10

Lebrun L, Milowich D, Le Mercier M, Allard J, Van Eycke YR, Roumeguere T, Decaestecker C, Salmon I, Rorive S.
PMID: 30226613 | DOI: 10.3892/or.2018.6697

Non‑coding RNAs (ncRNAs) have been shown to serve important roles in carcinogenesis via complex mechanisms, including transcriptional and post‑transcriptional regulation, and chromatin interactions. Urothelial carcinoma‑associated 1 (UCA1), a long ncRNA, was recently shown to have tumorigenic properties in urothelial bladder cancer (UBC), as demonstrated by enhanced proliferation, migration, invasion and therapy resistance of UBC cell lines in vitro. These in vitro findings suggested that UCA1 is associated with aggressive tumor behavior and could have prognostic implications in UBC. The aims of the present study were to therefore to investigate the statistical associations between UCA1 RNA expression and UBC pathological features, patient prognosis and p53 and Ki‑67 expression. Chromogenic in situ hybridization and immunohistochemistry were performed on UBC tissue microarrays to characterize UCA1 RNA, and p53 and Ki‑67 expression in 208 UBC cases, including 145 non‑muscle‑invasive and 63 muscle‑invasive cases. UCA1 was observed in the tumor cells of 166/208 (80%) UBC cases tested. No expression was noted in normal stromal and endothelium cells. Patients with UBC that overexpressed UCA1 (35%) had a significantly higher survival rate (P=0.006) compared with that in patients with UBC that did not overexpress UCA1. This prognostic factor was independent of tumor morphology, concomitant carcinoma in situ, tumor grade and tumor stage. In addition, the absence of UCA1 overexpression was significantly associated with a high Ki‑67 proliferative index (P=0.008) and a p53 'mutated' immunoprofile (strong nuclear expression or complete absence of staining; P=0.003). In conclusion, the present results identified UCA1 as potentially being a novel independent prognostic marker in UBC that was associated with a better patient prognosis and that could serve a pivotal role in bladder cancer carcinogenesis.
LncRNA T376626 is a promising serum biomarker and promotes proliferation, migration, and invasion via binding to LAMC2 in triple-negative breast cancer

Gene

2023 Jan 26

He, Y;Xiao, B;Lei, T;Xuan, J;Zhu, Y;Kuang, Z;Liu, J;He, J;Li, L;Sun, Z;
PMID: 36709879 | DOI: 10.1016/j.gene.2023.147227

Circulating long noncoding RNAs (lncRNAs) have been reported to serve as biomarkers for cancer diagnosis. Here, we identified the clinical diagnostic value and biological function of lncRNA T376626 in triple-negative breast cancer (TNBC).A genome-wide lncRNA microarray was used to screen promising serum-based lncRNA biomarkers. The expression of candidate serum lncRNAs was validated in 282 breast cancer (BC) patients and 78 healthy subjects. The diagnostic value of serum lncRNA T376626 was determined by receiver operating characteristic (ROC) curve. RNA fluorescent in situ hybridization (FISH) and RNAScope ISH assays were conducted to examine the expression and localization of lncRNA T376626 in TNBC cells and BC tissues. Kaplan-Meier analysis was conducted to evaluate the relationship between lncRNA T376626 and BC patients' overall survival (OS) rate. CCK-8, colony-forming, wound healing and Transwell assays were performed to investigate the biological function of lncRNA T376626 on cell proliferation, migration, and invasion in two TNBC cell lines. Cell apoptosis-, cell cycle- and epithelial-mesenchymal transition (EMT)-related biomarkers were quantified by western blots. The lncRNA T376626 binding proteins were screened and identified by RNA pulldown.LncRNA T376626 level was significantly higher in TNBC serums and tissues. Higher levels of lncRNA T376626 were positively associated with a higher pathological differentiation stage, more aggressive molecular subtype, and poor prognosis in BC and TNBC patients. The area under the curve (AUC) of serum lncRNA T376626 was 0.842. Overexpression (Knockdown) of lncRNA T376626 significantly promoted (inhibited) TNBC cell proliferation, migration, and invasion, possibly by regulating several cell cycle, cell apoptosis and EMT biomarkers. LAMC2 were identified as lncRNA T376626-binding proteins. LAMC2 facilitated TNBC proliferation and metastasis through lncRNA T376626.LncRNA T376626 may serve as a TNBC serum-based diagnostic and prognostic biomarker and play an oncogenic role in TNBC progression through binding to LAMC2.
LncRNA IL21-AS1 interacts with hnRNPU protein to promote IL21 overexpression and aberrant differentiation of Tfh cells in systemic lupus erythematosus

Clinical and translational medicine

2022 Dec 01

Liu, L;Hu, L;Long, H;Zheng, M;Hu, Z;He, Y;Gao, X;Du, P;Zhao, H;Yu, D;Lu, Q;Zhao, M;
PMID: 36447054 | DOI: 10.1002/ctm2.1117

The aberrant differentiation of T follicular helper (Tfh) cells plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of regulating Tfh cells differentiation remains unclear. Long noncoding RNAs (lncRNAs) act as important regulators in the processes of innate and adaptive immune response. Whether lncRNAs are involved in regulating Tfh cell differentiation and autoimmune responses need to be further identified.The characters and functions of human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were investigated by a series of biochemical assays and cell transfection assay. mIl21-AS1 regulating humoral immune response in vivo was explored by keyhole limpet haemocyanin (KLH) and chronic graft versus host disease (cGVHD) model.Human IL21-AS1 and its mouse homologous lncRNA (mIl21-AS) were identified and cloned. We uncovered that IL21-AS1 was highly expressed in CD4+ T cells of SLE patients and Tfh cells, which promoted differentiation of Tfh cells. Mechanistically, IL21-AS1 bound heterogeneous nuclear ribonucleoprotein U and recruited acetyltransferases CREB-binding protein to the promoter of IL21, leading to the transcriptional activation of IL21 and Tfh cells differentiation through increasing Histone H3 acetylation level on IL21 promoter. Moreover, Tfh proportion and antibodies production were significantly increased in mIl21-AS knock-in mice immunized with KLH. mIl21-AS1 overexpression also exacerbated the lupus-like phenotype in cGVHD mice model.Our results demonstrate that IL21-AS1 activates IL21 transcription via epigenetic mechanism to promote germinal centre response, adding insight into the molecular regulation of autoimmune pathogenesis and providing a novel target for SLE treatment.
Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer

Mol Cancer. 2015 Apr 8;14(1):77.

Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, Miyagi E, Hirahara F, Takano Y, Miyagi Y.
PMID: 25879517 | DOI: 10.1186/s12943-015-0351-z.

BACKGROUND: Elucidation of the molecular mechanisms by which cancer cells overcome hypoxia is potentially important for targeted therapy. Complexation of hypoxia-inducible factors (HIFs) with aryl hydrocarbon receptor nuclear translocators can enhance gene expression and initiate cellular responses to hypoxia. However, multiple molecular mechanisms may be required for cancer cells to adapt to diverse microenvironments. We previously demonstrated that a physical interaction between the ubiquitously expressed transcription factor Sp1 and HIF2 is a major cause of FVII gene activation in poor prognostic ovarian clear cell carcinoma (CCC) cells under hypoxia. Furthermore, it was found that FVII activation is synergistically enhanced when serum-starved cells are cultured under hypoxic conditions. In this study, we investigated whether HIFs and transcription factor Sp1 cooperate to activate multiple genes in CCC cells under conditions of serum starvation and hypoxia (SSH) and then contribute to malignant phenotypes. METHODS: To identify genes activated under hypoxic conditions in an Sp1-dependent manner, we first performed cDNA microarray analyses. We further investigated the molecular mechanisms of synergistic gene activations including the associated serum factors by various experiments such as real-time RT-PCR, western blotting and chromatin immunoprecipitation. The study was further extended to animal experiments to investigate how it contributes to CCC progression in vivo. RESULTS: ICAM1 is one such gene dramatically induced by SSH and is highly induced by SSH and its synergistic activation involves both the mTOR and autonomously activated TNFα-NFκB axes. We identified long chain fatty acids (LCFA) as a major class of lipids that is associated with albumin, a serum factor responsible for synergistic gene activation under SSH. Furthermore, we found that ICAM1 can be induced in vivo to promote tumor growth. CONCLUSION: Sp1 and HIFs collaborate to activate genes required for the adaptation of CCC cells to severe microenvironments, such as LCFA starvation and hypoxia. This study highlights the importance of transcriptional regulation under lipid starvation and hypoxia in the promotion of CCC tumor growth.
LincK contributes to breast tumorigenesis by promoting proliferation and epithelial-to-mesenchymal transition.

J Hematol Oncol.

2019 Feb 22

Li J, Hao Y, Mao W, Xue X, Xu P, Liu L, Yuan J, Zhang D, Li N, Chen H, Zhao L, Sun Z, Luo J, Chen R, Zhao RC.
PMID: 30795783 | DOI: 10.1186/s13045-019-0707-8

Abstract

BACKGROUND:

Increasing evidence has demonstrated that mesenchymal stem cells (MSCs) play a role in the construction of tumor microenvironments. Co-culture between tumor cells and MSCs provides an easy and useful platform for mimicking tumor microenvironments and identifying the important members involved in tumor progress. The long non-coding RNAs (lncRNAs) have been shown to regulate different tumorigenic processes. In this study, we aimed to examine functional lncRNA deregulations associated with breast cancer malignancy instigated by MSC-MCF-7 co-culture.

METHODS:

The microarrays were used to profile the expression changes of lncRNAs in MCF-7 cells during epithelial-mesenchymal transition (EMT) induced by co-culture with MSCs. We found that an intergenic lncRNA KB-1732A1.1 (termed LincK, partly overlapped with GASL1) was significantly elevated. To investigate the biological function of LincK, the expression of EMT markers, cell migration, invasion, proliferation, and colony formation were evaluated in vitro and xenograft assay in nude mice were performed in vivo. Furthermore, we detected LincK expression in clinical samples using RNAscope™ technology and verified aberrant expression of LincK in breast cancer data sets from The Cancer Genome Atlas (TCGA) by bioinformatic analysis. The underlying mechanisms of LincK were investigated using mRNA microarray analyses, Western blot, RNA pull down, and RNA immunoprecipitation.

RESULTS:

LincK induced an EMT progress in breast cancer cells (BCC) MCF-7, MDA-MB-453, and MDA-MB-231. The depletion of LincK decreased the growth, migration, and invasion in BCC, whereas the overexpression of LincK exerted the opposite effects. Moreover, knockdown of LincK repressed tumorigenesis, and ectopic expression of LincK promoted tumor growth in MCF-7 xenograft model. LincK ablation in MDA-MB-231 cells dramatically impaired lung metastasis when incubated intravenously into nude mice. Further, LincK was frequently elevated in breast cancer compared with normal breast tissue in clinical samples. Mechanistically, LincK may share common miRNA response elements with PBK and ZEB1 and regulate the effects of miR-200 s.

CONCLUSION:

LincK plays a significant role in regulating EMT and tumor growth and could be a potential therapeutic target in breast cancer.

Functional significance of gain-of-function H19 lncRNA in skeletal muscle differentiation and anti-obesity effects

Genome medicine

2021 Aug 28

Li, Y;Zhang, Y;Hu, Q;Egranov, SD;Xing, Z;Zhang, Z;Liang, K;Ye, Y;Pan, Y;Chatterjee, SS;Mistretta, B;Nguyen, TK;Hawke, DH;Gunaratne, PH;Hung, MC;Han, L;Yang, L;Lin, C;
PMID: 34454586 | DOI: 10.1186/s13073-021-00937-4

Exercise training is well established as the most effective way to enhance muscle performance and muscle building. The composition of skeletal muscle fiber type affects systemic energy expenditures, and perturbations in metabolic homeostasis contribute to the onset of obesity and other metabolic dysfunctions. Long noncoding RNAs (lncRNAs) have been demonstrated to play critical roles in diverse cellular processes and diseases, including human cancers; however, the functional importance of lncRNAs in muscle performance, energy balance, and obesity remains elusive. We previously reported that the lncRNA H19 regulates the poly-ubiquitination and protein stability of dystrophin (DMD) in muscular dystrophy.Here, we identified mouse/human H19-interacting proteins using mouse/human skeletal muscle tissues and liquid chromatography-mass spectrometry (LC-MS). Human induced pluripotent stem-derived skeletal muscle cells (iPSC-SkMC) from a healthy donor and Becker Muscular Dystrophy (BMD) patients were utilized to study DMD post-translational modifications and associated proteins. We identified a gain-of-function (GOF) mutant of H19 and characterized the effects on myoblast differentiation and fusion to myotubes using iPSCs. We then conjugated H19 RNA gain-of-function oligonucleotides (Rgof) with the skeletal muscle enrichment peptide agrin (referred to as AGR-H19-Rgof) and evaluated AGR-H19-Rgof's effects on skeletal muscle performance using wild-type (WT) C57BL/6 J mice and its anti-obesity effects using high-fat diet (HFD)- and leptin deficiency-induced obese mouse models.We demonstrated that both human and mouse H19 associated with DMD and that the H19 GOF exhibited enhanced interaction with DMD compared to WT H19. DMD was found to associate with serine/threonine-protein kinase MRCK alpha (MRCKα) and α-synuclein (SNCA) in iPSC-SkMC derived from BMD patients. Inhibition of MRCKα and SNCA-mediated phosphorylation of DMD antagonized the interaction between H19 and DMD. These signaling events led to improved skeletal muscle cell differentiation and myotube fusion. The administration of AGR-H19-Rgof improved the muscle mass, muscle performance, and base metabolic rate of WT mice. Furthermore, mice treated with AGR-H19-Rgof exhibited resistance to HFD- or leptin deficiency-induced obesity.Our study suggested the functional importance of the H19 GOF mutant in enhancing muscle performance and anti-obesity effects.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?