Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for TNF

ACD can configure probes for the various manual and automated assays for TNF for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for TNF (4413)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (33)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Human (1126) Apply Human filter
  • Monkey (611) Apply Monkey filter
  • Rat (417) Apply Rat filter
  • Mouse (279) Apply Mouse filter
  • Felis catus (265) Apply Felis catus filter
  • Pig (216) Apply Pig filter
  • Bovine (167) Apply Bovine filter
  • Anolis carolinensis (68) Apply Anolis carolinensis filter
  • Ovis aries (66) Apply Ovis aries filter
  • Dog (64) Apply Dog filter
  • Other (37) Apply Other filter
  • Rabbit (33) Apply Rabbit filter
  • Mesocricetus auratus (32) Apply Mesocricetus auratus filter
  • Rousettus aegyptiacus (32) Apply Rousettus aegyptiacus filter
  • Cervus elaphus (32) Apply Cervus elaphus filter
  • Eublepharis macularius (32) Apply Eublepharis macularius filter
  • Zebrafish (29) Apply Zebrafish filter
  • Sarcophilus harrisii (28) Apply Sarcophilus harrisii filter
  • Dasypus novemcinctus (28) Apply Dasypus novemcinctus filter
  • Callithrix jacchus (23) Apply Callithrix jacchus filter

Gene

  • Tnf (884) Apply Tnf filter
  • Tnfsf11 (234) Apply Tnfsf11 filter
  • Tnfrsf12a (202) Apply Tnfrsf12a filter
  • TNFRSF11A (172) Apply TNFRSF11A filter
  • TNFRSF11B (171) Apply TNFRSF11B filter
  • TNFAIP3 (167) Apply TNFAIP3 filter
  • TNFRSF1A (147) Apply TNFRSF1A filter
  • TNFSF13 (144) Apply TNFSF13 filter
  • TNFSF8 (144) Apply TNFSF8 filter
  • TNFRSF1B (136) Apply TNFRSF1B filter
  • TNFRSF8 (116) Apply TNFRSF8 filter
  • TNFRSF4 (110) Apply TNFRSF4 filter
  • TNFSF13B (108) Apply TNFSF13B filter
  • TNFRSF6B (108) Apply TNFRSF6B filter
  • TNFRSF13C (100) Apply TNFRSF13C filter
  • Traf6 (98) Apply Traf6 filter
  • TNFAIP6 (72) Apply TNFAIP6 filter
  • TNFRSF25 (72) Apply TNFRSF25 filter
  • TRAF3 (72) Apply TRAF3 filter
  • TRAF2 (72) Apply TRAF2 filter
  • Traf1 (72) Apply Traf1 filter
  • TNFAIP1 (72) Apply TNFAIP1 filter
  • TNFRSF10A (64) Apply TNFRSF10A filter
  • TNFSF10 (42) Apply TNFSF10 filter
  • TNFSF12 (40) Apply TNFSF12 filter
  • Traf7 (40) Apply Traf7 filter
  • TNFRSF17 (37) Apply TNFRSF17 filter
  • TNFSF15 (36) Apply TNFSF15 filter
  • Tnfrsf21 (36) Apply Tnfrsf21 filter
  • TNFRSF9 (36) Apply TNFRSF9 filter
  • Tnfaip8l1 (36) Apply Tnfaip8l1 filter
  • TRAP1 (36) Apply TRAP1 filter
  • TNFAIP2 (36) Apply TNFAIP2 filter
  • Tnfaip8l3 (36) Apply Tnfaip8l3 filter
  • C1QTNF12 (36) Apply C1QTNF12 filter
  • RELT (36) Apply RELT filter
  • C1qtnf4 (36) Apply C1qtnf4 filter
  • Tnfaip8 (36) Apply Tnfaip8 filter
  • Litaf (36) Apply Litaf filter
  • LOC101098755 (36) Apply LOC101098755 filter
  • Traf4 (36) Apply Traf4 filter
  • C1QTNF3 (35) Apply C1QTNF3 filter
  • C1qtnf6 (35) Apply C1qtnf6 filter
  • TRAF5 (34) Apply TRAF5 filter
  • CD40 (30) Apply CD40 filter
  • TNFRSF10B (28) Apply TNFRSF10B filter
  • Tnfsf4 (27) Apply Tnfsf4 filter
  • TNFSF14 (4) Apply TNFSF14 filter
  • C1qtnf1 (4) Apply C1qtnf1 filter
  • C1QTNF8 (4) Apply C1QTNF8 filter

Platform

  • Manual Assay RNAscope HiPlex (1520) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (431) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (234) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (123) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay BaseScope (21) Apply Manual Assay BaseScope filter
  • Manual Assay miRNAscope (20) Apply Manual Assay miRNAscope filter
  • Automated Assay for Leica Systems - miRNAscope (20) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (13) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (13) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (8) Apply Automated Assay for Ventana Systems - miRNAscope filter

Channel

  • 1 (416) Apply 1 filter
  • 2 (362) Apply 2 filter
  • 3 (239) Apply 3 filter
  • 4 (239) Apply 4 filter
  • 6 (120) Apply 6 filter
  • 5 (87) Apply 5 filter
  • 8 (2) Apply 8 filter

HiPlex Channel

  • T10 (252) Apply T10 filter
  • T12 (252) Apply T12 filter
  • T1 (251) Apply T1 filter
  • T11 (250) Apply T11 filter
  • T2 (239) Apply T2 filter
  • T3 (239) Apply T3 filter
  • T5 (239) Apply T5 filter
  • T7 (239) Apply T7 filter
  • T9 (239) Apply T9 filter
  • T6 (238) Apply T6 filter
  • T4 (237) Apply T4 filter
  • T8 (237) Apply T8 filter

Product

  • RNAscope Multiplex Fluorescent Assay (8) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Inflammation (10) Apply Inflammation filter
  • Cancer (6) Apply Cancer filter
  • Neuroscience (5) Apply Neuroscience filter
  • Infectious (3) Apply Infectious filter
  • Covid (2) Apply Covid filter
  • Infectious Disease (2) Apply Infectious Disease filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Behçet’s disease (1) Apply Behçet’s disease filter
  • Colitis (1) Apply Colitis filter
  • Crohn’s disease (1) Apply Crohn’s disease filter
  • Glaucoma (1) Apply Glaucoma filter
  • Lung (1) Apply Lung filter
  • MEFV gene mutations (1) Apply MEFV gene mutations filter
  • microRNA (1) Apply microRNA filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • Other (1) Apply Other filter
  • Other: Gut (1) Apply Other: Gut filter
  • Other: Liver (1) Apply Other: Liver filter
  • Pain (1) Apply Pain filter
  • Psychiatry (1) Apply Psychiatry filter

Product sub type

  • Target Probes (915) Apply Target Probes filter

Category

  • Publications (33) Apply Publications filter

Application

  • Cancer (1114) Apply Cancer filter
  • Cancer, Inflammation (722) Apply Cancer, Inflammation filter
  • Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell (704) Apply Cancer, Immunotherapy, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation, Neuroscience (251) Apply Cancer, Inflammation, Neuroscience filter
  • Inflammation (182) Apply Inflammation filter
  • Immunotherapy (178) Apply Immunotherapy filter
  • Neuroscience (59) Apply Neuroscience filter
  • Stem Cell (50) Apply Stem Cell filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (34) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Immunotherapy (31) Apply Cancer, Immunotherapy filter
  • Cancer, Immunotherapy, Inflammation (20) Apply Cancer, Immunotherapy, Inflammation filter
  • Cancer,Inflammation (15) Apply Cancer,Inflammation filter
  • Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell (11) Apply Cancer,Immunotherapy,Inflammation,Neuroscience,Stem Cell filter
  • Cancer,Inflammation,Neuroscience (1) Apply Cancer,Inflammation,Neuroscience filter
  • Cancer,Immunotherapy,Inflammation (1) Apply Cancer,Immunotherapy,Inflammation filter
Porcine Epidemic Diarrhea Virus Induces Vero Cell Apoptosis via the p53-PUMA Signaling Pathway

Viruses

2021 Jun 24

Yang, L;Wang, C;Shu, J;Feng, H;He, Y;Chen, J;Shu, J;
PMID: 34202551 | DOI: 10.3390/v13071218

Porcine Epidemic Diarrhea Virus (PEDV) is the causative agent of swine epidemic diarrhea. In order to study the pathogenic mechanism of PEDV, PEDV was inoculated into Vero cells cultured in vitro, and the total RNA of Vero cells was extracted to construct a library for Illumina high-throughput sequencing and screening of differentially expressed genes (p < 0.05). Five differentially expressed genes for qRT-PCR verification analysis were randomly selected, and the verification results were consistent with the transcriptome sequencing results. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis was performed on the differentially expressed genes screened above. The results showed that the target gene annotations of differentially expressed genes in the African green monkey genome were mainly enriched in the TNF signaling pathway, the P53 signaling pathway, the Jak-STAT signaling pathway, the MAPK signaling pathway, and immune inflammation. In addition, it has been reported that Puma can promote apoptosis and is a key mediator of P53-dependent and non-dependent apoptosis pathways. However, there is no report that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. It was found by flow cytometry that PEDV infection induced apoptosis, and by Western Blotting detection, PEDV infection significantly increased the expression of p53, BAX, and Puma apoptosis-related proteins. Treatment Vero cells with the p53 inhibitor, PFT-α, could significantly inhibit PEDV-induced apoptosis. Studies have shown that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. These findings provide data support for further elucidating the pathogenic mechanism of PEDV and developing an effective vaccine against PEDV.
Empagliflozin Disrupts a Tnfrsf12a-Mediated Feed Forward Loop That Promotes Left Ventricular Hypertrophy

Cardiovascular drugs and therapy

2021 Apr 22

Yerra, VG;Batchu, SN;Kabir, G;Advani, SL;Liu, Y;Siddiqi, FS;Connelly, KA;Advani, A;
PMID: 33886003 | DOI: 10.1007/s10557-021-07190-2

Although the cardioprotective benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors are now widely appreciated, the mechanisms underlying these benefits remain unresolved. Tumor necrosis factor receptor superfamily member 12a (Tnfrsf12a) is a receptor for tumor necrosis factor superfamily member 12 (Tnfsf12). Tnfrsf12a is highly inducible and plays a key role in the development of cardiac hypertrophy and heart failure. Here we set out to determine if SGLT2 inhibition affects the Tnfsf12/Tnfrsf12a system in the stressed myocardium. C57BL/6N mice that had undergone sham or transverse aortic constriction (TAC) surgery were treated with either the SGLT2 inhibitor empagliflozin (400 mg/kg diet; 60-65 mg/kg/day) or standard chow alone and were followed for 8 weeks. Tnfrsf12a expression in mouse hearts was assessed by in situ hybridization, qRT-PCR, and immunoblotting. Left ventricular (LV) mass, end-systolic volume, and end-diastolic volume were all increased in TAC mice and were significantly lower with empagliflozin. Myocyte hypertrophy and interstitial fibrosis in TAC hearts were similarly attenuated with empagliflozin. Tnfrsf12a expression was upregulated in mouse hearts following TAC surgery but not in the hearts of empagliflozin-treated mice. In cultured cardiomyocytes, Tnfrsf12a antagonism attenuated the increase in cardiomyocyte size that was induced by phenylephrine. Empagliflozin attenuates LV enlargement in mice with hypertrophic heart failure. This effect may be mediated, at least in part, by a reduction in loading conditions which limits upregulation of the inducible, proinflammatory, and prohypertrophic TNF superfamily receptor, Tnfrsf12a. Disruption of the Tnfsf12/Tnfrsf12a feed forward system may contribute to the cardioprotective benefits of SGLT2 inhibition.
The Skin as a critical window in unveiling the pathophysiologic principles of COVID-19

Clinics in Dermatology

2021 Jul 01

Magro, C;Nuovo, G;Mulvey, J;Laurence, J;Harp, J;Neil Crowson, A;
| DOI: 10.1016/j.clindermatol.2021.07.001

The severe acute respiratory distress syndrome-associated coronavirus-2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a single-stranded RNA virus whose sequence is known. COVID-19 is associated with a heterogeneous clinical phenotype ranging from asymptomatic to fatal disease. It appears that access to nasopharyngeal respiratory epithelia expressing angiotensin-converting enzyme (ACE) 2, the receptor for SARS CoV-2, is followed by viral replication in the pulmonary alveolar septal capillary bed. We have shown in prior studies that incomplete viral particles, termed pseudovirions, dock to deep subcutaneous and other vascular beds potentially contributing to the prothrombotic state and systemic complement activation that characterizes severe and critical COVID-19. A variety of skin rashes have been described in the setting of SARS-CoV-2 infection and more recently, following COVID-19 vaccination. The vaccines deliver a laboratory synthesized mRNA that encodes a protein that is identical to the spike glycoprotein of SARS-COV-2 allowing the production of immunogenic spike glycoprotein that will then elicit T cell and B cell adaptive immune responses. In this paper we review an array of cutaneous manifestations of COVID-19 that provide an opportunity to study critical pathophysiologic mechanisms that underlie all clinical facets of COVID-19 ranging from asymptomatic/mild to severe and critical COVID-19. We classify cutaneous COVID-19 according to underlying pathophysiologic principles. In this regard we propose two main pathways: 1) complement mediated thrombotic vascular injury syndromes deploying the alternative and mannan binding lectin pathways in the setting of severe and critical COVID-19 and 2) the robust T cell and type I interferon driven inflammatory and humoral driven immune complex mediated vasculitic cutaneous reactions seen with mild and moderate COVID-19. Novel data on cutaneous vaccine reactions are presented that manifest a clinical and morphologic parallel with similar eruptions seen in patients suffering from mild and moderate COVID-19 and in most cases represent systemic eczematoid hypersensitivity reactions to a putative vaccine based antigen. Finally, we show for the first time the localization of human synthesized spike glycoprotein following the COVID-19 vaccine to the cutaneous and subcutaneous vasculature confirming the ability of SARS CoV-2 spike glycoprotein to bind endothelium in the absence of intact virus.
Exploring Crimean-Congo hemorrhagic fever virus-induced hepatic injury using antibody-mediated type I interferon blockade in mice.

J Virol.

2018 Aug 15

Lindquist ME, Zeng X, Altamura LA, Daye SP, Delp KL, Blancett C, Coffin KM, Koehler JW, Coyne S, Shoemaker CJ, Garrison AR, Golden JW.
PMID: 30111561 | DOI: 10.1128/JVI.01083-18

Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hepatic injury in humans. However, the mechanism(s) causing this damage are poorly characterized. CCHFV produces an acute disease, including liver damage, in mice lacking type I interferon signaling (IFN-I) either due to STAT-1 gene deletion or disruption of the IFN-I receptor 1 gene. Here, we explored CCHFV-induced liver pathogenesis in mice using an antibody to disrupt IFN-I signaling. When IFN-I blockade was induced within 24 h post-exposure to CCHFV, mice developed severe disease with greater than 95% mortality by six days post-exposure. In addition, we observed increased proinflammatory cytokines, chemoattractants, and liver enzymes in these mice. Extensive liver damage was evident by 4 days post-exposure and was characterized by hepatocyte necrosis and loss of CLEC4F-positive Kupffer cells. Similar experiments in CCHFV-exposed NOD-SCID-γ (NSG), Rag2-deficient, and perforin-deficient mice also demonstrated liver injury, suggesting cytotoxic immune cells are dispensable for hepatic damage. Some apoptotic liver cells contained viral RNA while other apoptotic liver cells were negative, suggesting that cell death occurred by both intrinsic and extrinsic mechanisms. Protein and transcriptional analysis of livers revealed that activation of TNF superfamily members occurred by day four post-exposure, implicating these molecules as factors in liver cell death. These data provide insights into CCHFV-induced hepatic injury and demonstrate the utility of antibody-mediated IFN-I blockade in the study of CCHFV pathogenesis in mice.IMPORTANCE CCHFV is an important human pathogen that is both endemic and emerging throughout Asia, Africa and Europe. A common feature of acute disease is liver injury ranging from mild to fulminant hepatic failure. The processes through which CCHFV induces severe liver injury are unclear, mostly due to the limitations of existing small animal systems. The only small animal model in which CCHFV consistently produces severe liver damage are mice lacking IFN-I signaling. In this study, we used antibody-mediated blockade of IFN-I signaling in mice to study CCHFV liver pathogenesis in various transgenic mouse systems. We found liver injury did not depend on cytotoxic immune cells and observed extensive activation of death receptor signaling pathways in the liver during acute disease. Furthermore, acute CCHFV infection resulted in a near complete loss of Kupffer cells. Our model system provides insight into both the molecular and cellular features of CCHFV hepatic injury.

Concordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent staging

Journal of Clinical Investigation

2021 Sep 01

Dias, J;Fabozzi, G;March, K;Asokan, M;Almasri, C;Fintzi, J;Promsote, W;Nishimura, Y;Todd, J;Lifson, J;Martin, M;Gama, L;Petrovas, C;Pegu, A;Mascola, J;Koup, R;
| DOI: 10.1172/jci151632

Immunological characterization of the Fiebig-equivalent stages of SHIVAD8-EO infection showed that, despite the observed differences in progression of infection between the challenge groups, the timing of virus-specific CD8+ T cell responses, as well as the viral load and virus distribution in the LNs, was concordant between the groups when assessed by Fiebig-equivalent staging. LN SHIVAD8-EO RNA+ cells were initially detected in both follicular and extrafollicular areas and mostly preceding peak plasma viremia at Fiebig-equivalent stage II, in agreement with previous studies (31, 41-44). Their levels increased proportionally to viral load in plasma, and seemed to decrease at Fiebig-equivalent stage VI when strong LN SIV-specific CD8+ T cell responses were detected. These responses, which appeared to develop at later stages than in the peripheral blood of acutely HIV-1-infected subjects (45), were predominantly characterized by production of the highly proinflammatory cytokine TNF and expression of CD107a, indicative of degranulation. In addition, levels of fCD8+ T cells, previously shown to be highly cytolytic ex vivo and able to mediate killing of HIV-infected target cells in vitro (31, 46), were higher at Fiebig-equivalent stage VI than stage V. LN NK cell levels also transiently increased at Fiebig-equivalent stage V. Thus, our data are consistent with the notion that, after peak plasma viremia during Fiebig-equivalent stages V and VI of SHIVAD8-EO infection, cytotoxic immune responses develop in the LNs and may lead to lysis of virus-infected cells and release of virions. In fact, LN SHIVAD8-EO RNA+ virions were almost absent at Fiebig-equivalent stage II when SHIVAD8-EO RNA+ cells, likely producing virions (47), were already present but CD8+ T cell responses were undetectable. However, virions were highly abundant in the follicles during Fiebig-equivalent stage VI when CD8+ T cell responses were stronger. Although there was no significant correlation between the levels of LN SHIVAD8-EO RNA+ cells and the virus-specific function of LN CD8+ T cells in our study, possibly because of limited sample size and data variation between animals, previous studies reported in situ observation of CD8+ T cells expressing T cell intracellular antigen-1 (TIA-1) or perforin (48, 49) and increased activation of cytotoxic cells (50) in the LNs of HIV-1-infected subjects. Furthermore, CD8+ T cells with HIV- or SIV-specific killing activity in vitro were detected in the LNs, splenic white pulp, and tonsil GCs of HIV-1-infected subjects (46, 51), and in the LNs of SIV-infected NHPs (31, 52, 53). Also, NK cells were shown to accumulate in the LNs of African green monkeys during nonpathogenic SIV infection, where they played an important role in the control of viral replication (54).
Porcine reproductive and respiratory syndrome virus infection upregulates negative immune regulators and T-cell exhaustion markers

Journal of virology

2021 Aug 11

Chaudhari, J;Liew, CS;Riethoven, JM;Sillman, S;Vu, HLX;
PMID: 34379512 | DOI: 10.1128/JVI.01052-21

Porcine alveolar macrophage (PAM) is one of the primary cellular targets for PRRSV, but less than 2% of PAMs are infected with the virus during the acute stage of infection. To comparatively analyze the host transcriptional response between PRRSV-infected PAMs and bystanders PAMs that remained uninfected but were exposed to the inflammatory milieu of an infected lung, pigs were infected with a PRRSV strain expressing green fluorescent protein (PRRSV-GFP) and GFP+ (PRRSV infected) and GFP- (bystander) cells were sorted for RNA-sequencing (RNA-seq). Approximately 4.2% of RNA reads from GFP+ and 0.06% reads from GFP- PAMs mapped to the PRRSV genome, indicating that PRRSV-infected PAMs were effectively separated from bystander PAMs. Further analysis revealed that inflammatory cytokines, interferon-stimulated genes, and antiviral genes were highly upregulated in GFP+ as compared to GFP- PAMs. Importantly, negative immune regulators including NF-κB inhibitors (NFKBIA, NFKBID, NFKBIZ, and TNFAIP3), and T-cell exhaustion markers (PD-L1, PD-L2, IL10, IDO1, and TGFB2) were highly upregulated in GFP+ cells as compared to GFP- cells. By using in situ hybridization assay, RNA transcripts of TNF and NF-κB inhibitors were detected in PRRSV-infected PAMs cultured ex vivo and lung sections of PRRSV-infected pigs during the acute stage of infection. Collectively, the results suggest that PRRSV infection upregulates expression of negative immune regulators and T-cell exhaustion markers in PAMs to modulate the host immune response. Our findings provide further insight into PRRSV immunopathogenesis. Importance PRRSV is widespread in many swine producing countries, causing substantial economic loses to the swine industry. PAM is considered the primary target for PRRSV replication in pigs. However, less than 2% of PAM from an acutely infected pigs are infected with the virus. In the present study, we utilized a PRRSV-GFP strain to infect pigs and sorted infected- and bystander- PAMs from the pigs during the acute stage of infection for transcriptome analysis. PRRSV infected PAMs showed a distinctive gene expression profile and contained many uniquely activated pathways compared to bystander PAMs. Interestingly, upregulated expression of and NF-κB signaling inhibitors and T-cell exhaustion molecules were observed in PRRSV-infected PAMs. Our findings provide additional knowledge on the mechanisms that PRRSV employs to modulate the host immune system.

Pages

  • « first
  • ‹ previous
  • …
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?