Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for TNF

ACD can configure probes for the various manual and automated assays for TNF for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for TNF (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (33)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Tnf (13) Apply Tnf filter
  • TBD (4) Apply TBD filter
  • Ifng (3) Apply Ifng filter
  • TNF (3) Apply TNF filter
  • IL17A (2) Apply IL17A filter
  • C1qa (2) Apply C1qa filter
  • IL1B (2) Apply IL1B filter
  • Il-6 (2) Apply Il-6 filter
  • IL-1β (2) Apply IL-1β filter
  • CCR2 (1) Apply CCR2 filter
  • CD68 (1) Apply CD68 filter
  • IL12B (1) Apply IL12B filter
  • KRT19 (1) Apply KRT19 filter
  • Il1a (1) Apply Il1a filter
  • CXCL10 (1) Apply CXCL10 filter
  • FOS (1) Apply FOS filter
  • HBEGF (1) Apply HBEGF filter
  • IL13 (1) Apply IL13 filter
  • IL17F (1) Apply IL17F filter
  • IL22 (1) Apply IL22 filter
  • IL23A (1) Apply IL23A filter
  • IL4 (1) Apply IL4 filter
  • IL5 (1) Apply IL5 filter
  • MYC (1) Apply MYC filter
  • LTB (1) Apply LTB filter
  • Penk (1) Apply Penk filter
  • Atf3 (1) Apply Atf3 filter
  • PROM1 (1) Apply PROM1 filter
  • Bace2 (1) Apply Bace2 filter
  • SYP (1) Apply SYP filter
  • TLR3 (1) Apply TLR3 filter
  • TLR4 (1) Apply TLR4 filter
  • Apoe (1) Apply Apoe filter
  • Bace1 (1) Apply Bace1 filter
  • MBP (1) Apply MBP filter
  • NOS2 (1) Apply NOS2 filter
  • Prnp (1) Apply Prnp filter
  • Nr4a1 (1) Apply Nr4a1 filter
  • Il31 (1) Apply Il31 filter
  • CCL4 (1) Apply CCL4 filter
  • Dusp1 (1) Apply Dusp1 filter
  • CXCL9 (1) Apply CXCL9 filter
  • CXCL14 (1) Apply CXCL14 filter
  • Cd69 (1) Apply Cd69 filter
  • IFN-γ (1) Apply IFN-γ filter
  • IL17F (1) Apply IL17F filter
  • IL6 (1) Apply IL6 filter
  • IL8 (1) Apply IL8 filter
  • IL1B (1) Apply IL1B filter
  • IL-1α (1) Apply IL-1α filter

Product

  • RNAscope Multiplex Fluorescent Assay (8) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Inflammation (10) Apply Inflammation filter
  • Cancer (6) Apply Cancer filter
  • Neuroscience (5) Apply Neuroscience filter
  • Infectious (3) Apply Infectious filter
  • Covid (2) Apply Covid filter
  • Infectious Disease (2) Apply Infectious Disease filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Behçet’s disease (1) Apply Behçet’s disease filter
  • Colitis (1) Apply Colitis filter
  • Crohn’s disease (1) Apply Crohn’s disease filter
  • Glaucoma (1) Apply Glaucoma filter
  • Lung (1) Apply Lung filter
  • MEFV gene mutations (1) Apply MEFV gene mutations filter
  • microRNA (1) Apply microRNA filter
  • Ophthalmology (1) Apply Ophthalmology filter
  • Other (1) Apply Other filter
  • Other: Gut (1) Apply Other: Gut filter
  • Other: Liver (1) Apply Other: Liver filter
  • Pain (1) Apply Pain filter
  • Psychiatry (1) Apply Psychiatry filter

Category

  • (-) Remove Publications filter Publications (33)
No catalog probe was found for the gene = "TNF".
RNAscope™ Made-to-Order Probe can be designed for you. Please fill out this form.
Made-to-Order Probe
Sustained TNF signaling is required for the synaptic and anxiety-like behavioral response to acute stress

Molecular psychiatry

2022 Sep 14

Kemp, GM;Altimimi, HF;Nho, Y;Heir, R;Klyczek, A;Stellwagen, D;
PMID: 36104437 | DOI: 10.1038/s41380-022-01737-x

Acute stress triggers plasticity of forebrain synapses as well as behavioral changes. Here we reveal that Tumor Necrosis Factor α (TNF) is a required downstream mediator of the stress response in mice, necessary for stress-induced synaptic potentiation in the ventral hippocampus and for an increase in anxiety-like behaviour. Acute stress is sufficient to activate microglia, triggering the long-term release of TNF. Critically, on-going TNF signaling specifically in the ventral hippocampus is necessary to sustain both the stress-induced synaptic and behavioral changes, as these could be reversed hours after induction by antagonizing TNF signaling. This demonstrates that TNF maintains the synaptic and behavioral stress response in vivo, making TNF a potential novel therapeutic target for stress disorders.
Estimating tissue-specific TNF mRNA levels prior to anti-TNFα treatment may support therapeutic optimisation in IBD patients

Scandinavian journal of gastroenterology

2023 May 28

James, JP;Nielsen, BS;Langholz, E;Malham, M;Høgdall, E;Riis, LB;
PMID: 37246424 | DOI: 10.1080/00365521.2023.2217313

Tumour necrosis factor-α (TNF) antagonists have improved the management of inflammatory bowel disease (IBD), however, their usage and administration persist to be suboptimal. Here, we examined the relationship between tissue-specific TNF mRNA expression in mucosal biopsies from IBD patients and anti-TNF treatment response.Archived tissue samples from patients with luminal IBD that had all been or were in treatment with anti-TNF were included (18 adults and 24 paediatric patients). Patients were stratified into three groups according to anti-TNF response: responders, primary non-responders (PNR) and secondary loss of response (SLOR). TNF mRNA was detected using RNAscope in situ hybridisation (ISH) and the expression was quantified using image analysis.The ISH analysis showed varying occurrence of TNF mRNA positive cells located in lamina propria and often with increased density in lymphoid follicles (LF). Consequently, expression estimates were obtained in whole tissue areas with and without LF. Significantly higher TNF mRNA expression levels were measured in adults compared to paediatric patients in both the analyses with and without LF (p = .015 and p = .016, respectively). Considering the relation to response, the adult and paediatric patients were evaluated separately. In adults, the TNF expression estimates were higher in PNRs compared to responders with and without LF (p = .017 and p = .024, respectively).Our data indicate that adult PNR have significantly higher TNF mRNA levels than responders. This suggests that higher anti-TNF dose may be considered for IBD patients with high TNF mRNA expression estimates from the start of treatment.
Distinct immune modulatory roles of regulatory T cells in gut versus joint inflammation in TNF-driven spondyloarthritis

Annals of the rheumatic diseases

2023 May 17

Venken, K;Jarlborg, M;Decruy, T;Mortier, C;Vlieghe, C;Gilis, E;De Craemer, AS;Coudenys, J;Cambré, I;Fleury, D;Klimowicz, A;Van den Bosch, F;Hoorens, A;Lobaton, T;de Roock, S;Sparwasser, T;Nabozny, G;Jacques, P;Elewaut, D;
PMID: 37197892 | DOI: 10.1136/ard-2022-223757

Gut and joint inflammation commonly co-occur in spondyloarthritis (SpA) which strongly restricts therapeutic modalities. The immunobiology underlying differences between gut and joint immune regulation, however, is poorly understood. We therefore assessed the immunoregulatory role of CD4+FOXP3+ regulatory T (Treg) cells in a model of Crohn's-like ileitis and concomitant arthritis.RNA-sequencing and flow cytometry was performed on inflamed gut and joint samples and tissue-derived Tregs from tumour necrosis factor (TNF)∆ARE mice. In situ hybridisation of TNF and its receptors (TNFR) was applied to human SpA gut biopsies. Soluble TNFR (sTNFR) levels were measured in serum of mice and patients with SpA and controls. Treg function was explored by in vitro cocultures and in vivo by conditional Treg depletion.Chronic TNF exposure induced several TNF superfamily (TNFSF) members (4-1BBL, TWEAK and TRAIL) in synovium and ileum in a site-specific manner. Elevated TNFR2 messenger RNA levels were noted in TNF∆ARE/+ mice leading to increased sTNFR2 release. Likewise, sTNFR2 levels were higher in patients with SpA with gut inflammation and distinct from inflammatory and healthy controls. Tregs accumulated at both gut and joints of TNF∆ARE mice, yet their TNFR2 expression and suppressive function was significantly lower in synovium versus ileum. In line herewith, synovial and intestinal Tregs displayed a distinct transcriptional profile with tissue-restricted TNFSF receptor and p38MAPK gene expression.These data point to profound differences in immune-regulation between Crohn's ileitis and peripheral arthritis. Whereas Tregs control ileitis they fail to dampen joint inflammation. Synovial resident Tregs are particularly maladapted to chronic TNF exposure.
Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS

Cancer Cell.

2017 Jun 12

Yuan D, Huang S, Berger E, Liu L, Gross N, Heinzmann F, Ringelhan M, Connor TO, Stadler M, Meister M, Weber J, Öllinger R, Simonavicius N, Reisinger F, Hartmann D, Meyer R, Reich M, Seehawer M, Leone V, Höchst B, Wohlleber D, Jörs S, Prinz M, Spalding D,
PMID: 28609656 | DOI: 10.1016/j.ccell.2017.05.006

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant, heterogeneous cancer with poor treatment options. We found that mitochondrial dysfunction and oxidative stress trigger a niche favoring cholangiocellular overgrowth and tumorigenesis. Liver damage, reactive oxygen species (ROS) and paracrine tumor necrosis factor (Tnf) from Kupffer cells caused JNK-mediated cholangiocellular proliferation and oncogenic transformation. Anti-oxidant treatment, Kupffer cell depletion, Tnfr1 deletion, or JNK inhibition reduced cholangiocellular pre-neoplastic lesions. Liver-specific JNK1/2 deletion led to tumor reduction and enhanced survival in Akt/Notch- or p53/Kras-induced ICC models. In human ICC, high Tnf expression near ICC lesions, cholangiocellular JNK-phosphorylation, and ROS accumulation in surrounding hepatocytes are present. Thus, Kupffer cell-derived Tnf favors cholangiocellular proliferation/differentiation and carcinogenesis. Targeting the ROS/Tnf/JNK axis may provide opportunities for ICC therapy.

A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis

Proceedings of the National Academy of Sciences of the United States of America

2021 Mar 30

Mifflin, L;Hu, Z;Dufort, C;Hession, CC;Walker, AJ;Niu, K;Zhu, H;Liu, N;Liu, JS;Levin, JZ;Stevens, B;Yuan, J;Zou, C;
PMID: 33766915 | DOI: 10.1073/pnas.2025102118

Microglial-derived inflammation has been linked to a broad range of neurodegenerative and neuropsychiatric conditions, including amyotrophic lateral sclerosis (ALS). Using single-cell RNA sequencing, a class of Disease-Associated Microglia (DAMs) have been characterized in neurodegeneration. However, the DAM phenotype alone is insufficient to explain the functional complexity of microglia, particularly with regard to regulating inflammation that is a hallmark of many neurodegenerative diseases. Here, we identify a subclass of microglia in mouse models of ALS which we term RIPK1-Regulated Inflammatory Microglia (RRIMs). RRIMs show significant up-regulation of classical proinflammatory pathways, including increased levels of Tnf and Il1b RNA and protein. We find that RRIMs are highly regulated by TNFα signaling and that the prevalence of these microglia can be suppressed by inhibiting receptor-interacting protein kinase 1 (RIPK1) activity downstream of the TNF receptor 1. These findings help to elucidate a mechanism by which RIPK1 kinase inhibition has been shown to provide therapeutic benefit in mouse models of ALS and may provide an additional biomarker for analysis in ongoing phase 2 clinical trials of RIPK1 inhibitors in ALS.
Mapping mRNA expression of glaucoma genes in the healthy mouse eye.

Curr Eye Res.

2019 Apr 12

Hubens WHG, Breddels EM, Walid Y, Ramdas WD, Webers CAB, Gorgels TGMF.
PMID: 30978300 | DOI: 10.1080/02713683.2019.1607392

Abstract

Purpose/Aim: Many genes have been associated with primary open-angle glaucoma (POAG). Knowing exactly where they are expressed in the eye helps to unravel POAG pathology and to select optimal targets for intervention. We investigated whether RNA in-situ hybridization (RNA-ISH) is a convenient technique to obtain detailed pan-ocular expression data of these genes. We tested this for four diverse candidate POAG genes, selected because of unclear ocular distribution (F5 and Dusp1) and relevance for potential new therapies (Tnf, Tgfβr3). Optn, a POAG gene with well-known ocular expression pattern served as control.

METHODS:

We made a list of candidate glaucoma genes reported in genetic studies. A table of their ocular expression at the tissue level was compiled using publicly available microarray data (the ocular tissue database). To add cellular detail we performed RNA-ISH for Optn, Tnf, Tgfβr3, F5, and Dusp1 on eyes of healthy, 2-month-old, pigmented and albino mice.

RESULTS:

Expression of the Optn control matched with published immunohistochemistry data. Ocular expression of Tnf was generally low, with patches of higher Tnf expression, superficially in the corneal epithelium. F5 had a restricted expression pattern with high expression in the non-pigmented ciliary body epithelium and moderate expression in the peripapillary region. Tgfβr3 and Dusp1 showed ubiquitous expression.

CONCLUSIONS:

RNA-ISH is a suitable technique to determine the ocular expression pattern of POAG genes, adding meaningful cellular detail to existing microarray expression data. For instance, the high expression of F5 in the non-pigmented ciliary body epithelium suggests a role of this gene in aqueous humor dynamics and intraocular pressure. In addition, the ubiquitous expression of Tgfβr3 has implications for designing TGF-β related glaucoma therapies, with respect to side effects. Creating pan-ocular expression maps of POAG genes with RNA-ISH will help to identify POAG pathways in specific cell types and to select targets for drug development.

TNF blockade uncouples toxicity from antitumor efficacy induced with CD40 chemoimmunotherapy

JCI insight

2021 Jun 08

Stone, ML;Lee, J;Herrera, VM;Graham, K;Lee, JW;Huffman, A;Coho, H;Tooker, E;Myers, MI;Giannone, M;Li, Y;Buckingham, TH;Long, KB;Beatty, GL;
PMID: 34101617 | DOI: 10.1172/jci.insight.146314

Agonist CD40 antibodies are under clinical development in combination with chemotherapy as an approach to prime for anti-tumor T cell immunity. However, treatment with anti-CD40 is commonly accompanied by both systemic cytokine release and liver transaminase elevations which together account for the most common dose-limiting toxicities. Moreover, anti-CD40 treatment increases the potential for chemotherapy-induced hepatotoxicity. Here, we report a mechanistic link between cytokine release and hepatotoxicity induced by anti-CD40 when combined with chemotherapy and show that toxicity can be suppressed without impairing therapeutic efficacy. We demonstrate in mice and humans that anti-CD40 triggers transient hepatotoxicity marked by increased serum transaminase levels. In doing so, anti-CD40 sensitizes the liver to drug-induced toxicity. Unexpectedly, this biology is not blocked by depletion of multiple myeloid cell subsets, including macrophages, inflammatory monocytes, and granulocytes. Transcriptional profiling of the liver after anti-CD40 revealed activation of multiple cytokine pathways including TNF and interleukin (IL)-6. Neutralization of TNF, but not IL-6, prevented sensitization of the liver to hepatotoxicity induced with anti-CD40 in combination with chemotherapy without impacting anti-tumor efficacy. Our findings reveal a clinically feasible approach to mitigate toxicity without impairing efficacy in the use of agonist CD40 antibodies for cancer immunotherapy.
Cytokine RNA In Situ Hybridization Permits Individualized Molecular Phenotyping in Biopsies of Psoriasis and Atopic Dermatitis

JID Innovations

2021 Jun 01

Wang, A;Fogel, A;Murphy, M;Panse, G;McGeary, M;McNiff, J;Bosenberg, M;Vesely, M;Cohen, J;Ko, C;King, B;Damsky, W;
| DOI: 10.1016/j.xjidi.2021.100021

Detection of individual cytokines in routine biopsies from patients with inflammatory skin diseases has the potential to personalize diagnosis and treatment selection, but this approach has been limited by technical feasibility. We evaluate whether a chromogen-based RNA in situ hybridization approach can be used to detect druggable cytokines in psoriasis and atopic dermatitis. A series of psoriasis (n = 20) and atopic dermatitis (n = 26) biopsies were stained using RNA in situ hybridization for IL4, IL12B (IL-12/23 p40), IL13, IL17A, IL17F, IL22, IL23A (IL-23 p19), IL31, and TNF (TNF-α). NOS2 and IFNG, canonical psoriasis biomarkers, were also included. All 20 of the psoriasis cases were positive for IL17A, which tended to be the predominant cytokine, although some cases had relatively higher levels of IL12B, IL17F, or IL23A. The majority of cytokine expression in psoriasis was epidermal. A total of 22 of 26 atopic dermatitis cases were positive for IL13, also at varying levels; a subset of cases had significant IL4, IL22, or IL31 expression. Patterns were validated in independent bulk RNA-sequencing and single-cell RNA-sequencing datasets. Overall, RNA in situ hybridization for cytokines appears highly specific with virtually no background staining and may allow for individualized evaluation of treatment-relevant cytokine targets in biopsies from patients with inflammatory skin disorders.
BACE2 distribution in major brain cell types and identification of novel substrates

Life Science Alliance

2018 Feb 15

Voytyuk I, Mueller SA, Herber J, Snellinx A, Moechars D, van Loo G, Lichtenthaler SF, De Strooper B.
PMID: - | DOI: 10.26508/lsa.201800026

β-Site APP-cleaving enzyme 1 (BACE1) inhibition is considered one of the most promising therapeutic strategies for Alzheimer’s disease, but current BACE1 inhibitors also block BACE2. As the localization and function of BACE2 in the brain remain unknown, it is difficult to predict whether relevant side effects can be caused by off-target inhibition of BACE2 and whether it is important to generate BACE1-specific inhibitors. Here, we show that BACE2 is expressed in discrete subsets of neurons and glia throughout the adult mouse brain. We uncover four new substrates processed by BACE2 in cultured glia: vascular cell adhesion molecule 1, delta and notch-like epidermal growth factor–related receptor, fibroblast growth factor receptor 1, and plexin domain containing 2. Although these substrates were not prominently cleaved by BACE2 in healthy adult mice, proinflammatory TNF induced a drastic increase in BACE2-mediated shedding of vascular cell adhesion molecule 1 in CSF. Thus, although under steady-state conditions the effect of BACE2 cross-inhibition by BACE1-directed inhibitors is rather subtle, it is important to consider that side effects might become apparent under physiopathological conditions that induce TNF expression.

The Defenders of the Alveolus Succumb in COVID-19 Pneumonia to SARS-CoV-2, Necroptosis, Pyroptosis and Panoptosis

bioRxiv : the preprint server for biology

2022 Aug 08

Schifanella, L;Anderson, J;Wieking, G;Southern, PJ;Antinori, S;Galli, M;Corbellino, M;Lai, A;Klatt, N;Schacker, TW;Haase, AT;
PMID: 35982650 | DOI: 10.1101/2022.08.06.503050

The alveolar type II (ATII) pneumocyte has been called the defender of the alveolus because, amongst the cell†s many important roles, repair of lung injury is particularly critical. We investigated the extent to which SARS-CoV-2 infection incapacitates the ATII reparative response in fatal COVID-19 pneumonia, and describe massive infection and destruction of ATI and ATII cells. We show that both type I interferon-negative infected ATII and type I-interferon-positive uninfected ATII cells succumb to TNF-induced necroptosis, BTK-induced pyroptosis and a new PANoptotic hybrid form of inflammatory cell death that combines apoptosis, necroptosis and pyroptosis in the same cell. We locate pathway components of these cell death pathways in a PANoptosomal latticework that mediates emptying and disruption of ATII cells and destruction of cells in blood vessels associated with microthrombi. Early antiviral treatment combined with inhibitors of TNF and BTK could preserve ATII cell populations to restore lung function and reduce hyperinflammation from necroptosis, pyroptosis and panoptosis.In fatal COVID-19 pneumonia, the initial destruction of Type II alveolar cells by SARS-CoV-2 infection is amplified by infection of the large numbers of spatially contiguous Type II cells supplied by the proliferative reparative response.Interferon-negative infected cells and interferon-positive uninfected cells succumb to inflammatory forms of cell death, TNF-induced necroptosis, BTK-induced pyroptosis, and PANoptosis.All of the cell death pathway components, including a recently identified NINJ1 component, are localized in a PANoptosome latticework that empties in distinctive patterns to generate morphologically distinguishable cell remnants.Early combination treatment with inhibitors of SARS-CoV-2 replication, TNF and BTK could reduce the losses of Type II cells and preserve a reparative response to regenerate functional alveoli.
Linear ubiquitination-induced necrotic tumor remodeling elicits immune evasion

FEBS letters

2023 Apr 15

Sasaki, K;Hayamizu, Y;Murakami, R;Toi, M;Iwai, K;
PMID: 37060248 | DOI: 10.1002/1873-3468.14623

Tumor-elicited inflammation confers tumorigenic properties, including cell death resistance, proliferation, or immune evasion. To focus on inflammatory signaling in tumors, we investigated linear ubiquitination, which enhances the nuclear factor-κB signaling pathway and prevents extrinsic programmed cell death under inflammatory environments. Here, we showed that linear ubiquitination was augmented especially in tumor cells around a necrotic core. Linear ubiquitination allowed melanomas to tolerate the hostile tumor microenvironment and to extend a necrosis-containing morphology. Loss of linear ubiquitination resulted in few necrotic lesions and growth regression, further leading to repression of innate anti-PD-1 therapy resistance signatures in melanoma as well as activation of interferon responses and antigen presentation that promote immune-mediated tumor eradication. Collectively, linear ubiquitination promotes tumor-specific tissue remodeling and the ensuing immune evasion.
Early neuroinflammatory responses in the visual pathway in a feline inherited glaucoma model

Investigative Ophthalmology & Visual Science

2022 Jan 01

Oikawa, K;Kiland, J;Mathu, V;Torne, O;

METHODS : Retinal, optic nerve head (ONH) and distal optic nerve (ON) tissues from 8 juvenile 10-12 week-old cats (4 males and 4 females) with feline congenital glaucoma (FCG) and 5 age-matched normal control cats (3 males and 2 females) were used. Data for weekly intraocular pressure (IOP) and optic nerve axon counts were available for all subjects. Protein and gene expression in tissue cryosections were examined by immunofluorescence labeling (IF) and RNAscope in situ hybridization (ISH), respectively. Retinal tissue was IF labeled for myeloid cell marker, IBA-1 and flat-mounted. ISH for markers of infiltrating monocytes/macrophages (_CCR2_) and proinflammatory cytokines (_IL1A_, _C1QA_, _TNF_) was performed. Microglia were identified by IF of homeostatic microglial marker, P2RY12. Microscopy images wereanalyzed using Image J, QuPath and Imaris. Two-tailed unpaired t-test or Mann-Whitney test or ANOVA were used for between-group comparisons (p

Pages

  • 1
  • 2
  • 3
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?