Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for TLR2

ACD can configure probes for the various manual and automated assays for TLR2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for TLR2 (216)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (7)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TLR2 (3) Apply TLR2 filter
  • TBD (2) Apply TBD filter
  • CD68 (1) Apply CD68 filter
  • HES1 (1) Apply HES1 filter
  • Casp1 (1) Apply Casp1 filter
  • Mpo (1) Apply Mpo filter
  • IL1B (1) Apply IL1B filter
  • IL6 (1) Apply IL6 filter
  • TLR4 (1) Apply TLR4 filter
  • Cx3cr1 (1) Apply Cx3cr1 filter
  • Camp (1) Apply Camp filter
  • Hexb (1) Apply Hexb filter
  • P2ry12 (1) Apply P2ry12 filter
  • Aim2 (1) Apply Aim2 filter
  • NLRP3 (1) Apply NLRP3 filter
  • NLRP1 (1) Apply NLRP1 filter
  • ABCA3 (1) Apply ABCA3 filter
  • Ngp (1) Apply Ngp filter

Product

  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • TBD (1) Apply TBD filter

Research area

  • Inflammation (3) Apply Inflammation filter
  • Neuroscience (2) Apply Neuroscience filter
  • Covid (1) Apply Covid filter
  • diabetes (1) Apply diabetes filter
  • Injury (1) Apply Injury filter
  • Stem cell (1) Apply Stem cell filter

Category

  • Publications (7) Apply Publications filter
Expression of Toll-Like Receptor 2 in Glomerular Endothelial Cells and Promotion of Diabetic Nephropathy by Porphyromonas gingivalis Lipopolysaccharide

PLoS One. 2014 May 16;9(5):e97165.

Sawa Y, Takata S, Hatakeyama Y, Ishikawa H, Tsuruga E.
PMID: 24835775 | DOI: 10.1371/journal.pone.0097165.

The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-β in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy.
Localization of Toll-like Receptor (TLR) 2 and TLR4 mRNA in the Colorectal Mucosa of Miniature Dachshunds with Inflammatory Colorectal Polyps.

J Comp Pathol.

2017 Jan 12

Yokoyama N, Ohta H, Yamazaki J, Kagawa Y, Ichii O, Khoirun N, Morita T, Osuga T, Lim SY, Sasaki N, Morishita K, Nakamura K, Takiguchi M.
PMID: 28089357 | DOI: 10.1016/j.jcpa.2016.10.010

Inflammatory colorectal polyps (ICRPs) are characterized by the formation of multiple or solitary polyps with marked neutrophil infiltration in the colorectal area, and are speculated to be a novel form of breed-specific canine idiopathic inflammatory bowel disease (IBD). In human IBD, toll-like receptor (TLR) 2 and TLR4 have been reported to be involved in the pathogenesis of the disease. The aim of this study was to evaluate the expression of TLR2 and TLR4 mRNA in the colorectal mucosa of dogs with ICRPs by in-situ hybridization using an RNAscope assay. Samples of inflamed colorectal mucosa (n = 5) and non-inflamed mucosa (n = 5) from miniature dachshunds (MDs) with ICRPs and colonic mucosa from healthy beagles (n = 5) were examined. TLR2 and TLR4 hybridization signals were localized to the colorectal epithelium, inflammatory cells and fibroblasts in the inflamed colorectal mucosa of affected dogs. The signals were significantly greater in inflamed colorectal epithelium compared with non-inflamed epithelium of MDs with ICRPs and healthy beagles (P <0.05). These results suggest that increased expression of TLR2 and TLR4 mRNA in the inflamed colorectal mucosa results from not only inflammatory cell infiltration, but also the upregulation of TLR2 and TLR4 mRNA in the colonic epithelium.

Pathophysiology of reflux oesophagitis: role of Toll-like receptors 2 and 4 and Farnesoid X receptor

Virchows Archiv : an international journal of pathology

2021 Mar 08

Nortunen, M;Väkiparta, N;Porvari, K;Saarnio, J;Karttunen, TJ;Huhta, H;
PMID: 33686512 | DOI: 10.1007/s00428-021-03066-w

The pathogenesis of gastroesophageal reflux disease (GERD) is not fully understood. It involves the activation of mucosal immune-mediated and inflammatory responses. Toll-like receptors (TLR) 2 and TLR4 are pattern-recognition receptors of the innate immune system; they recognize microbial and endogenous ligands. Farnesoid X receptor (FXR) is a bile acid receptor that regulates the inflammatory response. We aimed to evaluate TLR2, TLR4 and FXR expression patterns in GERD. We re-evaluated 84 oesophageal biopsy samples according to the global severity (GS) score, including 26 cases with histologically normal oesophagus, 28 with histologically mild oesophagitis and 30 with severe oesophagitis. We used immunohistochemistry and in situ hybridization to assess the expression patterns of TLR2, TLR4 and FXR in oesophageal squamous cells. Immunohistochemistry showed that nuclear and cytoplasmic TLR2 was expressed predominantly in the basal layer of normal oesophageal epithelium. In oesophagitis, TLR2 expression increased throughout the epithelium, and the superficial expression was significantly more intensive compared to normal epithelium, p <0.01. Nuclear and cytoplasmic TLR4 was expressed throughout the thickness of squamous epithelium, with no change in oesophagitis. FXR was expressed in the nuclei of squamous cells, and the intensity of the expression increased significantly in oesophagitis (p <0.05). FXR expression correlated with basal TLR2. In situ hybridization confirmed the immunohistochemical expression patterns of TLR2 and TLR4. In GERD, TLR2, but not TLR4, expression was upregulated which indicates that innate immunity is activated according to a specific pattern in GERD. FXR expression was increased in GERD and might have a regulatory connection to TLR2.
Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury

Neural Regeneration Research

2022 Dec 14

Kang, H;Liu, Y;Li, Y;Wang, L;Zhao, Y;Yuan, R;Yang, M;Chen, Y;Zhang, H;Zhou, F;Qian, Z;
| DOI: 10.4103/1673-5374.363819

When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device. Because we respect your right to privacy, you can choose not to allow certain types of cookies on our website. Click on the different category headings to find out more and manage your cookie preferences. However, blocking some types of cookies may impact your experience on the site and the services we are able to offer. Privacy & Cookie Notice [http://journals.lww.com/_layouts/15/oaks.journals/privacy.aspx]Allow All
An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2

Cell host & microbe

2022 Dec 09

Barnett, KC;Xie, Y;Asakura, T;Song, D;Liang, K;Taft-Benz, SA;Guo, H;Yang, S;Okuda, K;Gilmore, RC;Loome, JF;Oguin Iii, TH;Sempowski, GD;Randell, SH;Heise, MT;Lei, YL;Boucher, RC;Ting, JP;
PMID: 36563691 | DOI: 10.1016/j.chom.2022.12.005

Elevated levels of cytokines IL-1β and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1β released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1β release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1β release. After release, IL-1β stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1β secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1β and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.
Identification Of Hub Genes Associated With Acute Pain Episodes In Individuals With Sickle Cell Disease

The Journal of Pain

2023 Apr 01

Mucalo, L;Jia, S;Roethle, M;Singh, A;Brousseau, D;Panepinto, J;Hessner, M;Brandow, A;
| DOI: 10.1016/j.jpain.2023.02.062

Sudden, unpredictable, severe acute pain episodes are the most common sickle cell disease (SCD) complication. Some SCD patients experience frequent pain episodes while others experience rare episodes. Knowledge of the biology driving this variability is limited. Using gene transcription analyses, we previously showed an elevated inflammatory response is associated with increased SCD pain episode frequency. We sought to replicate these findings in a larger SCD cohort and identify hub genes closely associated with increased pain frequency. We conducted plasma-induced transcription analyses in 132 SCD patients (baseline health) and 60 Black controls (4-21 years, both groups). 3028 differentially expressed genes between SCD patients and controls were retained for subsequent analyses with Weighted Gene Co-Expression Network Analysis (WGCNA). WGCNA was used to define modules (functionally grouped genes) and we correlated these modules with number of pain episodes requiring health care utilization in prior three years. Of 11 identified modules, four showed significant correlation with number of pain episodes. Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for ontological analysis of the four significant modules and key biological processes identified were inflammatory response and cellular response to lipopolysaccharide. Cytoscape was used to construct a protein-protein interaction network and the 10 top hub genes identified in hierarchical order were: TNF, CCR5, CCR1, CCL2, CXCL2, ITGAM, CCL7, CXCL3, TLR2 and MMP9. These genes, as part of the inflammatory response, support the immune system contributes to increased pain episode frequency. Identified hub genes may be leveraged as therapeutic targets for reducing SCD pain episodes. 1R61NS114954-01.
Activation of notch signaling in dorsal root ganglia innervating knee joints in experimental osteoarthritis

Osteoarthritis and Cartilage

2021 Apr 01

Wang, L;Miller, R;Malfait, A;
| DOI: 10.1016/j.joca.2021.02.480

Purpose: Surgical destabilization of the medial meniscus (DMM) is a widely used mouse model of knee osteoarthritis (OA). The cell bodies of primary sensory neurons innervating the knee joints are located in the lumbar dorsal root ganglia (L3-L5 DRG). Analysis of the gene expression profile of L3-L5 DRG after DMM or sham surgery revealed that innate neuro-immune pathways were strongly regulated, especially in the later stages of the model, 8-16 weeks after DMM, when persistent pain is associated with severe joint damage. In depth analysis of the microarray data further showed that a number of genes encoding molecules in the Notch signaling pathway were regulated, mostly in late-stage disease, along with the upregulation of the gene encoding monocyte chemoattractant protein (MCP)-1/C-C motif chemokine ligand 2 (CCL2). CCL2 is a proalgesic mediator that is released upon tolllike receptor (TLR) 2/4 activation, and plays a key role in initiating and maintaining pain in this model. The aim of this study was to investigate Notch signaling in the knee-innervating DRG of mice with experimental knee OA, and determine the effect of Notch signaling activation on TLR2/4-mediated CCL2 synthesis in cultured DRG cells. Methods: DMM or sham surgery was performed in the right knee of 10- week old male C57BL/6 mice. Ipsilateral L4 DRG from mice 26 weeks after DMM or sham surgery were collected and cryosectioned. Expression of the Notch downstream target gene, Hes1, was detected using RNA in situ hybridization (ISH) (RNAscope, Advanced Cell Diagnostics). Quantification of mRNA expression was performed as calculating H-score of each sample according to the 0-4 five-bin scoring system recommended by the manufacturer, based on the number of cells with the same range of number of dots per cell. Active Notch protein was detected via immunofluorescence (IF) staining using an antibody against Notch intracellular domain (NICD), which is only present after g-secretase cleavage of Notch at S3. For in vitro cultures of DRG cells, bilateral L3-L5 DRG were collected from 10-week old male naïve C57BL/6 mice. Following enzymatic digestion, DRG cells were plated on poly-L-lysine and laminin coated glass coverslips, and cultured in F12 medium supplemented with 1x N2 and 0.5% fetal bovine serum. Inhibition of Notch signaling was achieved by (1) g-secretase inhibitor, DAPT; (2) ADAM-17 inhibitor, TAPI-1; or (3) soluble form of the Jag1 peptide (sJag1). On day 4, cells were pre-treated with DAPT (25 mM), TAPI-1 (20 mM), or sJag1 (40 mM) for 1 hour, followed by addition of the TLR2 agonist, Pam3CSK4 (1 mg/ml), or the TLR4 agonist, LPS (1 mg/ ml). Then, RNA was collected 3 hours later for qRT-PCR to quantify Ccl2 mRNA expression, or culture supernatants were collected 24 hours later to measure the CCL2 protein level using Quantikine Mouse CCL2/JE/ MCP-1 Immunoassay kit from R&D Systems, Inc.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?