Cancer genomics & proteomics
Ferician, AM;Ferician, OC;Cumpanas, AD;Berzava, PL;Nesiu, A;Barmayoun, A;Cimpean, AM;
PMID: 35732321 | DOI: 10.21873/cgp.20334
We previously described four different vascular patterns (reticular, diffuse, fasciculate, and trabecular) in renal cell carcinoma (RCC) suggesting an early and heterogeneous acquisition of perivascular cells most probably due to a particular PDGF pathway gene expression profile. The aim of the study was to study PDGF pathway gene expression profiles, separately for each vascular pattern.TaqMan assay for the PDGF pathway was performed on twelve cases of ccRCC previously evaluated by histopathology, immunohistochemistry, and RNAscope. Gene expression profile was correlated with grade, invasion, vascular patterns, and VEGF.PIK3C3 and SLC9A3 genes were overexpressed in all vascular patterns, but they were significantly correlated with high VEGF mRNA in the reticular and diffuse pattern. STAT1, JAK2, SHC2, SRF and CHUK (IKK) were exclusively overexpressed in cases with diffuse vascular pattern. SLC9A3, CHUK and STAT3 were overexpressed in G2 tumors.Three ccRCC subgroups were defined: 1) PIK3C3 (VSP34)/SLC9A3 which may be proper for anti PIK3C3 inhibitors; 2) VEGFhigh subgroup where association of anti VEGF may be a benefit and 3) JAK2/STAT1 subgroup, potentially being eligible for anti JAK/STAT therapy associated with IKK inhibitors.
The Journal of clinical investigation
Harper, J;Ribeiro, SP;Chan, CN;Aid, M;Deleage, C;Micci, L;Pino, M;Cervasi, B;Raghunathan, G;Rimmer, E;Ayanoglu, G;Wu, G;Shenvi, N;Barnard, RJ;Del Prete, GQ;Busman-Sahay, K;Silvestri, G;Kulpa, DA;Bosinger, SE;Easley, K;Howell, BJ;Gorman, D;Hazuda, DJ;Estes, JD;Sekaly, RP;Paiardini, M;
PMID: 35230978 | DOI: 10.1172/JCI155251
Interleukin (IL)-10 is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper cell (TFH) differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph node (LN) were induced by infection and not normalized with ART. During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including TFH, and predicted the frequency of CD4+ TFH and their cell-associated SIV-DNA content during ART, respectively. In ART-treated RMs, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B-cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and by extension LN memory CD4+ T-cells, including TFH and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T-cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.
Dai, Z;Wang, X;Peng, R;Zhang, B;Han, Q;Lin, J;Wang, J;Lin, J;Jiang, M;Liu, H;Lee, TH;Lu, KP;Zheng, M;
PMID: 34687791 | DOI: 10.1016/j.canlet.2021.10.024
Sorafenib and its derivative regorafenib are the first- and second-line targeted drugs for advanced HCC, respectively. Although both drugs improve overall survival, drug resistance remains the major barrier to their full efficacy. Thus, strategies to enhance sorafenib and regorafenib efficacy against HCC are solely needed. Interleukin-6 receptor alpha (IL-6Rα) is the receptor of IL-6, a multi-functional cytokine, which plays key roles in liver-regeneration, inflammation and development of hepatocellular carcinoma (HCC). Here we show the expression of IL-6Rα was induced in response to sorafenib. Depletion of IL-6Rα abolished IL-6 induced STAT3 phosphorylation at 705th tyrosine and tumor growth of HCC cells under sorafenib treatment. Mechanistically, activating transcription factor 3 (ATF3) was induced in response to sorafenib and subsequently bound to the promoter of IL-6Rα, leading to its transcriptional activation. Depletion of ATF3 or its upstream transcription factor, ATF4, attenuated IL-6Rα induction and IL-6 mediated sorafenib resistance. The ATF4-ATF3-IL-6Rα cascade is also activated by regorafenib. Furthermore, blockade of IL-6Rα with the FDA approved IL-6Rα antibody drug, Sarilumab, drastically attenuated both sorafenib and regorafenib resistance in patient-derived xenograft (PDX) tumors, where human IL-6 could be detected by a novel in situ hybridization technique, named RNAscope. Together, our data reveal that ATF3-mediated IL-6Rα up-regulation promotes both sorafenib and regorafenib resistance in HCC, and targeting IL-6Rα represents a novel therapeutic strategy to enhance sorafenib/regorafenib efficacy for advanced HCC treatment.
A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma
Milon, B;Shulman, ED;So, KS;Cederroth, CR;Lipford, EL;Sperber, M;Sellon, JB;Sarlus, H;Pregernig, G;Shuster, B;Song, Y;Mitra, S;Orvis, J;Margulies, Z;Ogawa, Y;Shults, C;Depireux, DA;Palermo, AT;Canlon, B;Burns, J;Elkon, R;Hertzano, R;
PMID: 34592158 | DOI: 10.1016/j.celrep.2021.109758
Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.
Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis
Droho, S;Cuda, CM;Perlman, H;Lavine, JA;
PMID: 34508129 | DOI: 10.1038/s41598-021-97522-x
Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Interleukin-6 (IL6) is a pro-inflammatory and pro-angiogenic cytokine that is correlated with AMD progression and nAMD activity. We hypothesize that anti-IL6 therapy is a potential nAMD therapeutic. We found that IL6 levels were increased after laser injury and expressed by macrophages. Il6-deficiency decreased laser-induced CNV area and exogenous IL6 addition increased choroidal sprouting angiogenesis. Il6-null mice demonstrated equally increased macrophage numbers as wildtype mice. At steady state, IL6R expression was detected on peripheral blood and ocular monocytes. After laser injury, the number of IL6R+Ly6C+ monocytes in blood and IL6R+ macrophages in the eye were increased. In human choroid, macrophages expressed IL6, IL6R, and IL6ST. Furthermore, IL6R+ macrophages displayed a transcriptional profile consistent with STAT3 (signal transducer and activator of transcription 3) activation and angiogenesis. Our data show that IL6 is both necessary and sufficient for choroidal angiogenesis. Macrophage-derived IL6 may stimulate choroidal angiogenesis via classical activation of IL6R+ macrophages, which then stimulate angiogenesis. Targeting IL6 or the IL6R could be an effective adjunctive therapy for treatment-resistant nAMD patients.
Molecular Analysis of the Kidney From a Patient With COVID-19-Associated Collapsing Glomerulopathy
Meliambro, K;Li, X;Salem, F;Yi, Z;Sun, Z;Chan, L;Chung, M;Chancay, J;Vy, HMT;Nadkarni, G;Wong, JS;Fu, J;Lee, K;Zhang, W;He, JC;Campbell, KN;
PMID: 33942030 | DOI: 10.1016/j.xkme.2021.02.012
Recent Case reports suggest COVID-19 is associated with collapsing glomerulopathy in African Americans with APOL1 risk alleles, however, it is unclear if disease pathogenesis is similar to HIVAN. Here RNA sequencing analysis of a kidney biopsy specimen from a patient with COVID-19-associated collapsing glomerulopathy and APOL1 risk alleles (G1/G1) revealed similar levels of APOL1 and ACE2 mRNA transcripts as compared to 12 control kidney samples downloaded from the GTEx Portal. Whole genome sequencing of the COVID-19-associated collapsing glomerulopathy kidney sample identified four indel gene variants, three of which are of unknown significance with respect to chronic kidney disease and/or FSGS. Molecular profiling of the kidney demonstrated activation of COVID-19-associated cell injury pathways such as inflammation and coagulation. Evidence for direct SARS-CoV-2 infection of kidney cells was lacking, which is consistent with the findings of several recent studies. Interestingly, immunostaining of kidney biopsy sections revealed increased expression of phospho-STAT3 in both COVID-19-associated collapsing glomerulopathy and HIVAN as compared to control kidney tissue. Importantly, IL-6-induced activation of STAT3 may be a targetable mechanism driving COVID-19-associated acute kidney injury.
Brahma-Related Gene-1 (BRG1) promotes the malignant phenotype of glioblastoma cells
Journal of cellular and molecular medicine
Wang, Y;Yang, CH;Schultz, AP;Sims, MM;Miller, DD;Pfeffer, LM;
PMID: 33528916 | DOI: 10.1111/jcmm.16330
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumour that is resistant to existing therapeutics. Identifying signalling pathways deregulated in GBM that can be targeted therapeutically is critical to improve the present dismal prognosis for GBM patients. In this report, we have identified that the BRG1 (Brahma-Related Gene-1) catalytic subunit of the SWI/SNF chromatin remodelling complex promotes the malignant phenotype of GBM cells. We found that BRG1 is ubiquitously expressed in tumour tissue from GBM patients, and high BRG1 expression levels are localized to specific brain tumour regions. Knockout (KO) of BRG1 by CRISPR-Cas9 gene editing had minimal effects on GBM cell proliferation, but significantly inhibited GBM cell migration and invasion. BRG1-KO also sensitized GBM cells to the anti-proliferative effects of the anti-cancer agent temozolomide (TMZ), which is used to treat GBM patients in the clinic, and selectively altered STAT3 tyrosine phosphorylation and gene expression. These results demonstrate that BRG-1 promotes invasion and migration, and decreases chemotherapy sensitivity, indicating that it functions in an oncogenic manner in GBM cells. Taken together, our findings suggest that targeting BRG1 in GBM may have therapeutic benefit in the treatment of this deadly form of brain cancer.
Mesencephalic Electrical Stimulation Reduces Neuroinflammation after Photothrombotic Stroke in Rats by Targeting the Cholinergic Anti-Inflammatory Pathway
International journal of molecular sciences
Schuhmann, MK;Papp, L;Stoll, G;Blum, R;Volkmann, J;Fluri, F;
PMID: 33514001 | DOI: 10.3390/ijms22031254
Inflammation is crucial in the pathophysiology of stroke and thus a promising therapeutic target. High-frequency stimulation (HFS) of the mesencephalic locomotor region (MLR) reduces perilesional inflammation after photothrombotic stroke (PTS). However, the underlying mechanism is not completely understood. Since distinct neural and immune cells respond to electrical stimulation by releasing acetylcholine, we hypothesize that HFS might trigger the cholinergic anti-inflammatory pathway via activation of the α7 nicotinic acetylcholine receptor (α7nAchR). To test this hypothesis, rats underwent PTS and implantation of a microelectrode into the MLR. Three hours after intervention, either HFS or sham-stimulation of the MLR was applied for 24 h. IFN-γ, TNF-α, and IL-1α were quantified by cytometric bead array. Choline acetyltransferase (ChAT)+ CD4+-cells and α7nAchR+-cells were quantified visually using immunohistochemistry. Phosphorylation of NFĸB, ERK1/2, Akt, and Stat3 was determined by Western blot analyses. IFN-γ, TNF-α, and IL-1α were decreased in the perilesional area of stimulated rats compared to controls. The number of ChAT+ CD4+-cells increased after MLR-HFS, whereas the amount of α7nAchR+-cells was similar in both groups. Phospho-ERK1/2 was reduced significantly in stimulated rats. The present study suggests that MLR-HFS may trigger anti-inflammatory processes within the perilesional area by modulating the cholinergic system, probably via activation of the α7nAchR.
Hasenoehrl C, Feuersinger D, Sturm EM, Bärnthaler T, Heitzer E, Graf R, Grill M, Pichler M, Beck S, Butcher L, Thomas D, Ferreirós N, Schuligoi R, Schweiger C, Haybaeck J, Schicho R.
PMID: 28875496 | DOI: 10.1002/ijc.31030
The putative cannabinoid receptor GPR55 has been shown to play a tumor-promoting role in various cancers, and is involved in many physiological and pathological processes of the gastrointestinal (GI) tract. While the cannabinoid receptor 1 (CB1 ) has been reported to suppress intestinal tumor growth, the role of GPR55 in the development of GI cancers is unclear. We, therefore, aimed at elucidating the role of GPR55 in colorectal cancer (CRC), the third most common cancer worldwide. Using azoxymethane (AOM)- and dextran sulfate sodium (DSS)-driven CRC mouse models, we found that GPR55 plays a tumor-promoting role that involves alterations of leukocyte populations, i.e. myeloid-derived suppressor cells and T lymphocytes, within the tumor tissues. Concomitantly, expression levels of COX-2 and STAT3 were reduced in tumor tissue of GPR55 knockout mice, indicating reduced presence of tumor-promoting factors. By employing the experimental CRC models to CB1 knockout and CB1 /GPR55 double knockout mice, we can further show that GPR55 plays an opposing role to CB1 . We report that GPR55 and CB1 mRNA expression are differentially regulated in the experimental models and in a cohort of 86 CRC patients. Epigenetic methylation of CNR1 and GPR55 was also differentially regulated in human CRC tissue compared to control samples. Collectively, our data suggest that GPR55 and CB1 play differential roles in colon carcinogenesis where the former seems to act as oncogene and the latter as tumor suppressor.
International immunopharmacology
Yan, B;Mao, X;Hu, S;Wang, S;Liu, X;Sun, J;
PMID: 37104918 | DOI: 10.1016/j.intimp.2023.110166
Aryl hydrocarbon receptor (AhR) activation promotes intestinal barrier repair and enhances the gut mucosal barrier function in inflammatory bowel diseases (IBD). Spermidine is beneficial in several murine models of IBD and may affect AhR activity. However, the precise effects of spermidine on the intestinal barrier and AhR remain unclear. This study was designed to investigate whether spermidine affects AhR and gut barrier function in IBD models as well as, its underlying mechanism.We used dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mice, as well as, Caco2 cells incubated with TNF-α and IFN-γ to establish multiple IBD models, followed by spermidine intervention. Alcian blue/Periodic acid-Schiff (AB/PAS) staining, Fluorescein isothiocyanate (FITC)-dextran permeability assay, transepithelial electrical resistance (TER), tight junction protein (TJs) expression, and 16S rRNA scope in situ hybridization were performed to assess intestinal barrier function. AhR expression and the associated pathways were measured. AhR-targeted adeno-associated virus (AAV) and siRNA were used to explore the related molecular mechanisms.Spermidine significantly attenuated the increased intestinal permeability, decreased TER, abnormal distribution of TJs in colitis, and bacterial translocation from the gut tract. Additionally, it significantly increased AhR and Nrf2 expression and inhibited STAT3 phosphorylation. However, the protective effects of spermidine and the related alterations in pathway proteins were largely abolished by the specific inhibition of AhR.Our study demonstrated that spermidine rescues intestinal barrier defects in mice with colitis via the AhR-Nrf2 and AhR-STAT3 pathways, providing a potential therapeutic agent for IBD and other conditions associated with dysregulated gut barrier function.
Biochemical and biophysical research communications
Guo, J;Chang, C;Yang, LY;Cai, HQ;Chen, DX;Zhang, Y;Cai, Y;Wang, JJ;Wei, WQ;Hao, JJ;Wang, MR;
PMID: 35421632 | DOI: 10.1016/j.bbrc.2022.03.144
The present study was to identify abnormal methylation genes implicated in esophageal squamous cell carcinoma (ESCC). Genomic methylation alterations in ESCC tissues were analyzed using laser-microdissection and whole-genome bisulfite sequencing. CXCL14 promoter was frequently hypermethylated in ESCC tissues. The correlation of CXCL14 hypermethylation status and the mRNA and protein expression levels were validated using nested methylation-specific PCR (nMS-PCR), RNAscope in situ hybridization (RISH) and Western blot. RISH results showed completely negative CXCL14 expression in 34.3% (34/99) ESCC, compared with those in the basal layer cells of normal epithelia. Low expression of CXCL14 was more present in patients with lower differentiation. The anticancer role of CXCL14 has been commonly associated with immune regulation in the literature. Here, we observed by functional analysis that CXCL14 can also act as a tumor suppressor in ESCC cells. 5-Aza-dC treatment suppressed CXCL14 methylation and up-regulated the expression of CXCL14. Ectopic expression of CXCL14 suppressed the proliferation, invasion, tumor growth, and lung metastasis of ESCC cells. Both ectopic expression and induction of CXCL14 with 5-Aza-dC inhibited the activity of SRC, MEK1/2 and STAT3 in ESCC cells, while activated EGFR. Importantly, a combination of CXCL14 expression and SRC or EGFR inhibitor dramatically repressed the proliferation of ESCC cells and the growth of xenografts. Our findings revealed a direct tumor suppressor role of CXCL14, but not through the immune system. The data suggest that for ESCC patients with low level CXCL14, increasing CXCL14 expression combined with inhibition of SRC or EGFR might be a promising therapeutic strategy.
Lu, X;An, L;Fan, G;Zang, L;Huang, W;Li, J;Liu, J;Ge, W;Huang, Y;Xu, J;Du, S;Cao, Y;Zhou, T;Yin, H;Yu, L;Jiao, S;Wang, H;
PMID: 35197608 | DOI: 10.1038/s41422-022-00628-8
TSPAN family of proteins are generally considered to assemble as multimeric complexes on the plasma membrane. Our previous work uncovered that TSPAN8 can translocate into the nucleus as a membrane-free form, a process that requires TSPAN8 palmitoylation and association with cholesterol to promote its extraction from the plasma membrane and subsequent binding with 14-3-3θ and importin-β. However, what upstream signal(s) regulate(s) the nuclear translocation of TSPAN8, the potential function of TSPAN8 in the nucleus, and the underlying molecular mechanisms all remain unclear. Here, we demonstrate that, epidermal growth factor receptor (EGFR) signaling induces TSPAN8 nuclear translocation by activating the kinase AKT, which in turn directly phosphorylates TSPAN8 at Ser129, an event essential for its binding with 14-3-3θ and importin ß1. In the nucleus, phosphorylated TSPAN8 interacts with STAT3 to enhance its chromatin occupancy and therefore regulates transcription of downstream cancer-promoting genes, such as MYC, BCL2, MMP9, etc. The EGFR-AKT-TSPAN8-STAT3 axis was found to be hyperactivated in multiple human cancers, and associated with aggressive phenotype and dismal prognosis. We further developed a humanized monoclonal antibody hT8Ab4 that specifically recognizes the large extracellular loop of TSPAN8 (TSPAN8-LEL), thus being able to block the extraction of TSPAN8 from the plasma membrane and consequently its nuclear localization. Importantly, both in vitro and in vivo studies demonstrated an antitumor effect of hT8Ab4. Collectively, we discovered an unconventional function of TSPAN8 and dissected the underlying molecular mechanisms, which not only showcase a new layer of biological complexity of traditional membrane proteins, but also shed light on TSPAN8 as a novel therapeutic target for refractory cancers.