ACD can configure probes for the various manual and automated assays for STAT3 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Gastroenterology.
2016 Mar 18
Wörmann SM, Song L, Ai J, Diakopoulos KN, Görgülü K, Ruess D, Campbell A, Doglioni C, Jodrell D, Neesse A, Demir EI, Karpathaki AP, Barenboim M, Hagemann T, Rose-John S, Sansom O, Schmid RM, Protti MP, Lesina M, Algül H
PMID: 27003603 | DOI: 10.1053/j.gastro.2016.03.010.
One treatment strategy for pancreatic ductal adenocarcinoma is to modify, rather than deplete, the tumor stroma. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) is associated with progression of pancreatic and other solid tumors. We investigated whether loss of P53 function contributes to persistent activation of STAT3 and modification of the pancreatic tumor stroma in patients and mice.
Stat3, Il6st (encodes gp130), or Trp53 were disrupted, or a mutant form of P53 (P53R172H) or transgenic sgp130 were expressed, in mice that developed pancreatic tumors due to expression of activated KRAS (KrasG12D, KC mice). Pancreata were collected and analyzed by immunohistochemistry, in situ hybridization, quantitative reverse-transcription PCR, or immunoblot assays; fluorescence-activated cell sorting to identify immune cells. We obtained frozen pancreatic tumor specimens from patients and measured levels of phosphorylated STAT3 and P53 by immunohistochemistry; protein levels were associated with survival using Kaplan-Meier analyses. We measured levels of STAT3, P53, ligands for gp130, interleukin-6, cytokines, sonic hedgehog signaling, STAT3 phosphorylation (activation), and accumulation of reactive oxygen species in primary pancreatic cells from mice. Mice with pancreatic tumors were given gemcitabine and a JAK2 inhibitor; tumor growth was monitored by 3-dimensional ultrasound.
STAT3 was constitutively phosphorylated in pancreatic tumor cells from KC mice with loss or mutation of P53. Tumor cells of these mice accumulated reactive oxygen species and had lower activity of the phosphatase SHP2 and prolonged phosphorylation of JAK2, compared to tumors from KC mice with functional P53. These processes did not require the gp130 receptor. Genetic disruption of Stat3 in mice, or pharmacologic inhibitors of JAK2 or STAT3 activation, reduced fibrosis and the numbers of pancreatic stellate cells in the tumor stroma and altered the types of immune cells that infiltrated tumors. Mice given a combination of gemcitabine and a JAK2 inhibitor formed smaller tumors and survived longer than mice given control agents; the tumor stroma had fewer activated pancreatic stellate cells, lower levels of periostin, and alterations in collagen production and organization. Phosphorylation of STAT3 correlated with P53 mutation and features of infiltrating immune cells in human pancreatic tumors. Patients whose tumors had lower levels of phosphorylated STAT3 and functional P53 had significantly longer survival times than patients with high levels of phosphorylated STAT3 and P53 mutation.
In pancreatic tumors of mice, loss of P53 function activates JAK2-STAT3 signaling, which promotes modification of the tumor stroma and tumor growth and resistance to gemcitabine. In human pancreatic tumors, STAT3 phosphorylation correlated with P53 mutation and patient survival time. Inhibitors of this pathway slow tumor growth and stroma formation, alter immune cell infiltration, and prolong survival of mice.
Oncotarget.P
2015 Sep 15
Roy A, Coum A, Marinescu VD, Põlajeva J, Smits A, Nelander S, Uhrbom L, Westermark B, Forsberg-Nilsson K, Pontén F, Tchougounova E.
PMID: 26164207 | DOI: -
Glioblastoma (GBM) is a high-grade glioma with a complex microenvironment, including various inflammatory cells and mast cells (MCs) as one of them. Previously we had identified glioma grade-dependent MC recruitment. In the present study we investigated the role of plasminogen activator inhibitor 1 (PAI-1) in MC recruitment.PAI-1, a primary regulator in the fibrinolytic cascade is capable of forming a complex with fibrinolytic system proteins together with low-density lipoprotein receptor-related protein 1 (LRP1). We found that neutralizing PAI-1 attenuated infiltration of MCs. To address the potential implication of LRP1 in this process, we used a LRP1 antagonist, receptor-associated protein (RAP), and demonstrated the attenuation of MC migration. Moreover, a positive correlation between the number of MCs and the level of PAI-1 in a large cohort of human glioma samples was observed. Our study demonstrated the expression of LRP1 in human MC line LAD2 and in MCs in human high-grade glioma. The activation of potential PAI-1/LRP1 axis with purified PAI-1 promoted increased phosphorylation of STAT3 and subsequently exocytosis in MCs.These findings indicate the influence of the PAI-1/LRP1 axis on the recruitment of MCs in glioma. The connection between high-grade glioma and MC infiltration could contribute to patient tailored therapy and improve patient stratification in future therapeutic trials.
J Clin Invest.
2017 Nov 13
Wang S, Liang K, Hu Q, Li P, Song J, Yang Y, Yao J, Mangala LS, Li C, Yang W, Park PK, Hawke DH, Zhou J, Zhou Y, Xia W, Hung MC, Marks JR, Gallick GE, Lopez-Berestein G, Flores ER, Sood AK, Huang S, Yu D, Yang L, Lin C.
PMID: 29130936 | DOI: 10.1172/JCI91553
Conventional therapies for breast cancer brain metastases (BCBMs) have been largely ineffective because of chemoresistance and impermeability of the blood-brain barrier. A comprehensive understanding of the underlying mechanism that allows breast cancer cells to infiltrate the brain is necessary to circumvent treatment resistance of BCBMs. Here, we determined that expression of a long noncoding RNA (lncRNA) that we have named lncRNA associated with BCBM (Lnc-BM) is prognostic of the progression of brain metastasis in breast cancer patients. In preclinical murine models, elevated Lnc-BM expression drove BCBM, while depletion of Lnc-BM with nanoparticle-encapsulated siRNAs effectively treated BCBM. Lnc-BM increased JAK2 kinase activity to mediate oncostatin M- and IL-6-triggered STAT3 phosphorylation. In breast cancer cells, Lnc-BM promoted STAT3-dependent expression of ICAM1 and CCL2, which mediated vascular co-option and recruitment of macrophages in the brain, respectively. Recruited macrophages in turn produced oncostatin M and IL-6, thereby further activating the Lnc-BM/JAK2/STAT3 pathway and enhancing BCBM. Collectively, our results show that Lnc-BM and JAK2 promote BCBMs by mediating communication between breast cancer cells and the brain microenvironment. Moreover, these results suggest targeting Lnc-BM as a potential strategy for fighting this difficult disease.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com