Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LGR5

ACD can configure probes for the various manual and automated assays for LGR5 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for LGR5 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (72)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (59) Apply Lgr5 filter
  • Axin2 (9) Apply Axin2 filter
  • OLFM4 (8) Apply OLFM4 filter
  • OLFM4 (7) Apply OLFM4 filter
  • ASCL2 (5) Apply ASCL2 filter
  • Sox9 (3) Apply Sox9 filter
  • GLI1 (3) Apply GLI1 filter
  • Lgr6 (3) Apply Lgr6 filter
  • Wnt2b (3) Apply Wnt2b filter
  • Lgr4 (3) Apply Lgr4 filter
  • ASCL2 (3) Apply ASCL2 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt4 (2) Apply Wnt4 filter
  • Wnt7b (2) Apply Wnt7b filter
  • BMI1 (2) Apply BMI1 filter
  • Rspo1 (2) Apply Rspo1 filter
  • Rspo3 (2) Apply Rspo3 filter
  • Wnt5a (2) Apply Wnt5a filter
  • EPHB2 (2) Apply EPHB2 filter
  • SMOC2 (2) Apply SMOC2 filter
  • LRIG1 (2) Apply LRIG1 filter
  • WNT2 (2) Apply WNT2 filter
  • Alpi (2) Apply Alpi filter
  • THBS1 (2) Apply THBS1 filter
  • ERBB2 (1) Apply ERBB2 filter
  • SOX2 (1) Apply SOX2 filter
  • Dkk3 (1) Apply Dkk3 filter
  • Wnt16 (1) Apply Wnt16 filter
  • Wnt1 (1) Apply Wnt1 filter
  • Wnt6 (1) Apply Wnt6 filter
  • Wnt7a (1) Apply Wnt7a filter
  • egfp (1) Apply egfp filter
  • CD34 (1) Apply CD34 filter
  • Rspo2 (1) Apply Rspo2 filter
  • Rspo4 (1) Apply Rspo4 filter
  • Atoh1 (1) Apply Atoh1 filter
  • Gif (1) Apply Gif filter
  • CD44 (1) Apply CD44 filter
  • Wdr43 (1) Apply Wdr43 filter
  • CLU (1) Apply CLU filter
  • Dkk1 (1) Apply Dkk1 filter
  • CSF1R (1) Apply CSF1R filter
  • KRT79 (1) Apply KRT79 filter
  • EGF (1) Apply EGF filter
  • EGFR (1) Apply EGFR filter
  • EREG (1) Apply EREG filter
  • HES1 (1) Apply HES1 filter
  • Notch1 (1) Apply Notch1 filter
  • Cpt1a (1) Apply Cpt1a filter

Product

  • RNAscope 2.5 HD Red assay (15) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (11) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (10) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (7) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • (-) Remove Stem Cells filter Stem Cells (72)
  • Cancer (25) Apply Cancer filter
  • Development (4) Apply Development filter
  • Inflammation (4) Apply Inflammation filter
  • Developmental (3) Apply Developmental filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • Diet (1) Apply Diet filter
  • Gastric stromal cells (1) Apply Gastric stromal cells filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious Disease (1) Apply Infectious Disease filter

Category

  • Publications (72) Apply Publications filter
Lymphatics act as a signaling hub to regulate intestinal stem cell activity

Cell stem cell

2022 Jun 15

Niec, RE;Chu, T;Schernthanner, M;Gur-Cohen, S;Hidalgo, L;Pasolli, HA;Luckett, KA;Wang, Z;Bhalla, SR;Cambuli, F;Kataru, RP;Ganesh, K;Mehrara, BJ;Pe'er, D;Fuchs, E;
PMID: 35728595 | DOI: 10.1016/j.stem.2022.05.007

Barrier epithelia depend upon resident stem cells for homeostasis, defense, and repair. Epithelial stem cells of small and large intestines (ISCs) respond to their local microenvironments (niches) to fulfill a continuous demand for tissue turnover. The complexity of these niches and underlying communication pathways are not fully known. Here, we report a lymphatic network at the intestinal crypt base that intimately associates with ISCs. Employing in vivo loss of function and lymphatic:organoid cocultures, we show that crypt lymphatics maintain ISCs and inhibit their precocious differentiation. Pairing single-cell and spatial transcriptomics, we apply BayesPrism to deconvolve expression within spatial features and develop SpaceFold to robustly map the niche at high resolution, exposing lymphatics as a central signaling hub for the crypt in general and ISCs in particular. We identify WNT-signaling factors (WNT2, R-SPONDIN-3) and a hitherto unappreciated extracellular matrix protein, REELIN, as crypt lymphatic signals that directly govern the regenerative potential of ISCs.
PDGFRα-induced stromal maturation is required to restrain postnatal intestinal epithelial stemness and promote defense mechanisms

Cell stem cell

2022 May 05

Jacob, JM;Di Carlo, SE;Stzepourginski, I;Lepelletier, A;Ndiaye, PD;Varet, H;Legendre, R;Kornobis, E;Benabid, A;Nigro, G;Peduto, L;
PMID: 35523143 | DOI: 10.1016/j.stem.2022.04.005

After birth, the intestine undergoes major changes to shift from an immature proliferative state to a functional intestinal barrier. By combining inducible lineage tracing and transcriptomics in mouse models, we identify a prodifferentiation PDGFRαHigh intestinal stromal lineage originating from postnatal LTβR+ perivascular stromal progenitors. The genetic blockage of this lineage increased the intestinal stem cell pool while decreasing epithelial and immune maturation at weaning age, leading to reduced postnatal growth and dysregulated repair responses. Ablating PDGFRα in the LTBR stromal lineage demonstrates that PDGFRα has a major impact on the lineage fate and function, inducing a transcriptomic switch from prostemness genes, such as Rspo3 and Grem1, to prodifferentiation factors, including BMPs, retinoic acid, and laminins, and on spatial organization within the crypt-villus and repair responses. Our results show that the PDGFRα-induced transcriptomic switch in intestinal stromal cells is required in the first weeks after birth to coordinate postnatal intestinal maturation and function.
Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth

Nature cardiovascular research

2022 May 01

Bernier-Latmani, J;Cisarovsky, C;Mahfoud, S;Ragusa, S;Dupanloup, I;Barras, D;Renevey, F;Nassiri, S;Anderle, P;Squadrito, ML;Siegert, S;Davanture, S;González-Loyola, A;Fournier, N;Luther, SA;Benedito, R;Valet, P;Zhou, B;De Palma, M;Delorenzi, M;Sempoux, C;Petrova, TV;
PMID: 35602406 | DOI: 10.1038/s44161-022-00061-5

Stem and progenitor cells residing in the intestinal crypts drive the majority of colorectal cancers (CRCs), yet vascular contribution to this niche remains largely unexplored. VEGFA is a key driver of physiological and tumor angiogenesis. Accordingly, current anti-angiogenic cancer therapies target the VEGFA pathway. Here we report that in CRC expansion of the stem/progenitor pool in intestinal crypts requires VEGFA-independent growth and remodeling of blood vessels. Epithelial transformation induced expression of the endothelial peptide apelin, directs migration of distant venous endothelial cells towards progenitor niche vessels ensuring optimal perfusion. In the absence of apelin, loss of injury-inducible PROX1+ epithelial progenitors inhibited both incipient and advanced intestinal tumor growth. Our results establish fundamental principles for the reciprocal communication between vasculature and the intestinal progenitor niche and provide a mechanism for resistance to VEGFA-targeting drugs in CRCs.
Disruption of the crypt niche promotes outgrowth of mutated colorectal tumor stem cells

JCI insight

2022 Mar 08

Klingler, S;Hsu, KS;Hua, G;Martin, ML;Adileh, M;Baslan, T;Zhang, Z;Paty, PB;Fuks, Z;Brown, AM;Kolesnick, R;
PMID: 35260534 | DOI: 10.1172/jci.insight.153793

Recent data establish a logarithmic expansion of leucine rich repeat containing G protein coupled receptor 5-positive (Lgr5+) colonic epithelial stem cells (CESCs) in human colorectal cancer (CRC). Complementary studies using the murine 2-stage azoxymethane-dextran sulfate sodium (AOM-DSS) colitis-associated tumor model indicate early acquisition of Wnt pathway mutations drives CESC expansion during adenoma progression. Here, subdivision of the AOM-DSS model into in vivo and in vitro stages revealed DSS induced physical separation of CESCs from stem cell niche cells and basal lamina, a source of Wnt signals, within hours, disabling the stem cell program. While AOM delivery in vivo under non-adenoma-forming conditions yielded phenotypically normal mucosa and organoids derived thereof, niche injury ex vivo by progressive DSS dose escalation facilitated outgrowth of Wnt-independent dysplastic organoids. These organoids contained 10-fold increased Lgr5+ CESCs with gain-of-function Wnt mutations orthologous to human CRC driver mutations. We posit CRC originates by niche injury-induced outgrowth of normally suppressed mutated stem cells, consistent with models of adaptive oncogenesis.
Adult Mouse Liver Contains Two Distinct Populations of Cholangiocytes.

Stem Cell Reports.

2017 Jul 04

Li B, Dorrell C, Canaday PS, Pelz C, Haft A, Finegold M, Grompe M.
PMID: 28689996 | DOI: 10.1016/j.stemcr.2017.06.003

The biliary system plays an important role in several acquired and genetic disorders of the liver. We have previously shown that biliary duct epithelium contains cells giving rise to proliferative Lgr5+ organoids in vitro. However, it remained unknown whether all biliary cells or only a specific subset had this clonogenic activity. The cell surface protease ST14 was identified as a positive marker for the clonogenic subset of cholangiocytes and was used to separate clonogenic and non-clonogenic duct cells by fluorescence-activated cell sorting. Only ST14hi duct cells had the ability to generate organoids that could be serially passaged. The gene expression profiles of clonogenic and non-clonogenic duct cells were similar, but several hundred genes were differentially expressed. RNA fluorescence in situ hybridization showed that clonogenic duct cells are interspersed among regular biliary epithelium at a ∼1:3 ratio. We conclude that adult murine cholangiocytes can be subdivided into two populations differing in their proliferative capacity.

Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling.

Cell Rep.

2018 Aug 28

Schmitt M, Schewe M, Sacchetti A, Feijtel D, van de Geer WS, Teeuwssen M, Sleddens HF, Joosten R, van Royen ME, van de Werken HJG, van Es J, Clevers H, Fodde R.
PMID: 30157426 | DOI: 10.1016/j.celrep.2018.07.085

IBD syndromes such as Crohn's disease and ulcerative colitis result from the inflammation of specific intestinal segments. Although many studies have reported on the regenerative response of intestinal progenitor and stem cells to tissue injury, very little is known about the response of differentiated lineages to inflammatory cues. Here, we show that acute inflammation of the mouse small intestine is followed by a dramatic loss of Lgr5+ stem cells. Instead, Paneth cells re-enter the cell cycle, lose their secretory expression signature, and acquire stem-like properties, thus contributing to the tissue regenerative response to inflammation. Stem cell factor secretion upon inflammation triggers signaling through the c-Kit receptor and a cascade of downstream events culminating in GSK3β inhibition and Wnt activation in Paneth cells. Hence, the plasticity of the intestinal epithelium in response to inflammation goes well beyond stem and progenitor cells and extends to the fully differentiated and post-mitotic Paneth cells.

Helicobacter pylori Activate and Expand Lgr5+ Stem Cells Through Direct Colonization of the Gastric Glands (check out Movie S4 when it gets out)

Gastroenterology. 2015 Feb 25.

Sigal M, Rothenberg ME, Logan CY, Lee JY, Honaker RW, Cooper RL, Passarelli B, Camorlinga M, Bouley DM, Alvarez G, Nusse R, Torres J, Amieva MR

Background & Aims Helicobacter pylori infection is the main risk factor for gastric cancer. We characterized the interactions of H pylori with gastric epithelial progenitor and stem cells in humans and mice and investigated how these interactions contribute to H pylori-induced pathology. Methods We used quantitative confocal microscopy and 3-dimensional reconstruction of entire gastric glands to determine the localizations of H pylori in stomach tissues from humans and infected mice. Using lineage tracing to mark cells derived from Lgr5+ stem cells (Lgr5-eGFP-IRES-CreERT2/Rosa26-TdTomato mice) and in situ hybridization, we analyzed gastric stem cell responses to infection. Isogenic H pylori mutants were used to determine the role of specific virulence factors in stem cell activation and pathology. Results H pylori grow as distinct bacterial microcolonies deep in the stomach glands and interact directly with gastric progenitor and stem cells in tissues from mice and humans. These gland-associated bacteria activate stem cells, increasing the number of stem cells, accelerating Lgr5+ stem cell proliferation, and upregulating expression of stem cell-related genes. Mutant bacteria with defects in chemotaxis that are able to colonize the stomach surface but not the antral glands in mice do not activate stem cells. Moreover, bacteria that are unable to inject the contact-dependent virulence factor CagA into the epithelium colonized stomach glands in mice, but did not activate stem cells or produce hyperplasia to the same extent as wild-type H pylori. Conclusions H pylori colonize and manipulate the progenitor and stem cell compartments, which alters turnover kinetics and glandular hyperplasia. Bacterial ability to alter the stem cells has important implications for gastrointestinal stem cell biology and H pylori-induced gastric pathology.
RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis.

Gut.

2016 Aug 10

Hilkens J, Timmer NC, Boer M, Ikink GJ, Schewe M, Sacchetti A, Koppens MA, Song JY, Bakker ER.
PMID: 27511199 | DOI: 10.1136/gutjnl-2016-311606

Abstract

OBJECTIVE:

The gross majority of colorectal cancer cases results from aberrant Wnt/β-catenin signalling through adenomatous polyposis coli (APC) or CTNNB1 mutations. However, a subset of human colon tumours harbour, mutually exclusive with APC and CTNNB1 mutations, gene fusions in RSPO2 or RSPO3, leading to enhanced expression of these R-spondin genes. This suggested that RSPO activation can substitute for the most common mutations as an alternative driver for intestinal cancer. Involvement of RSPO3 in tumour growth was recently shown in RSPO3-fusion-positive xenograft models. The current study determines the extent into which solely a gain in RSPO3 actually functions as a driver of intestinal cancer in a direct, causal fashion, and addresses the in vivo activities of RSPO3 in parallel.

DESIGN:

We generated a conditional Rspo3 transgenic mouse model in which the Rspo3 transgene is expressed upon Cre activity. Cre is provided by cross-breeding with Lgr5-GFP-CreERT2 mice.

RESULTS:

Upon in vivo Rspo3 expression, mice rapidly developed extensive hyperplastic, adenomatous and adenocarcinomatous lesions throughout the intestine. RSPO3 induced the expansion of Lgr5+ stem cells, Paneth cells, non-Paneth cell label-retaining cells and Lgr4+ cells, thus promoting both intestinal stem cell and niche compartments. Wnt/β-catenin signalling was modestly increased upon Rspo3 expression and mutant Kras synergised with Rspo3 in hyperplastic growth.

CONCLUSIONS:

We provide in vivo evidence that RSPO3 stimulates the crypt stem cell and niche compartments and drives rapid intestinal tumorigenesis. This establishes RSPO3 as a potent driver of intestinal cancer and proposes RSPO3 as a candidate target for therapy in patients with colorectal cancer harbouring RSPO3 fusions.

Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions

PLoS One

2020 Apr 17

Ambrosini YM, Park Y, Jergens AE, Shin W, Min S, Atherly T, Borcherding DC, Jang J, Allenspach K, Mochel JP, Kim HJ
PMID: 32302323 | DOI: 10.1371/journal.pone.0231423

Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches
Lrig1+ gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach.

Gut.

2017 Aug 16

Choi E, Lantz TL, Vlacich G, Keeley TM, Samuelson LC, Coffey RJ, Goldenring JR, Powell AE.
PMID: 28814482 | DOI: 10.1136/gutjnl-2017-313874

Abstract

OBJECTIVE:

Lrig1 is a marker of proliferative and quiescent stem cells in the skin and intestine. We examined whether Lrig1-expressing cells are long-lived gastric progenitors in gastric glands in the mouse stomach. We also investigated how the Lrig1-expressing progenitor cells contribute to the regeneration of normal gastric mucosa by lineage commitment to parietal cells after acute gastric injury in mice.

DESIGN:

We performed lineage labelling using Lrig1-CreERT2/+;R26R-YFP/+ (Lrig1/YFP) or R26R-LacZ/+ (Lrig1/LacZ) mice to examine whether the Lrig1-YFP-marked cells are gastric progenitor cells. We studied whether Lrig1-YFP-marked cells give rise to normal gastric lineage cells in damaged mucosa using Lrig1/YFP mice after treatment with DMP-777 to induce acute injury. We also studied Lrig1-CreERT2/CreERT2 (Lrig1 knockout) mice to examine whether the Lrig1 protein is required for regeneration of gastric corpus mucosa after acute injury.

RESULTS:

Lrig1-YFP-marked cells give rise to gastric lineage epithelial cells both in the gastric corpus and antrum, in contrast to published results that Lgr5 only marks progenitor cells within the gastric antrum. Lrig1-YFP-marked cells contribute to replacement of damaged gastric oxyntic glands during the recovery phase after acute oxyntic atrophy in the gastric corpus. Lrig1 null mice recovered normally from acute gastric mucosal injury indicating that Lrig1 protein is not required for lineage differentiation. Lrig1+ isthmal progenitor cells did not contribute to transdifferentiating chief cell lineages after acute oxyntic atrophy.

CONCLUSIONS:

Lrig1 marks gastric corpus epithelial progenitor cells capable of repopulating the damaged oxyntic mucosa by differentiating into normal gastric lineage cells in mouse stomach.

Dynamic intestinal stem cell plasticity and lineage remodeling by a nutritional environment relevant to human risk for tumorigenesis

Molecular cancer research : MCR

2023 Apr 25

Choi, J;Zhang, X;Li, W;Houston, M;Peregrina, K;Dubin, R;Ye, K;Augenlicht, L;
PMID: 37097719 | DOI: 10.1158/1541-7786.MCR-22-1000

NWD1, a purified diet establishing mouse exposure to key nutrients recapitulating levels that increase human risk for intestinal cancer, reproducibly causes mouse sporadic intestinal and colonic tumors reflecting human etiology, incidence, frequency and lag with developmental age. Complex NWD1 stem cell and lineage reprogramming was deconvolved by bulk and scRNAseq, scATACseq, functional genomics and imaging. NWD1 extensively, rapidly, and reversibly, reprogrammed Lgr5hi stem cells, epigenetically down-regulating Ppargc1a expression, altering mitochondrial structure and function. This suppressed Lgr5hi stem cell functions and developmental maturation of Lgr5hi cell progeny as cells progressed through progenitor cell compartments, recapitulated by Ppargc1a genetic inactivation in Lgr5hi cells in vivo. Mobilized Bmi1+, Ascl2hi cells adapted lineages to the nutritional environment and elevated antigen processing and presentation pathways, especially in mature enterocytes, causing chronic, pro-tumorigenic low-level inflammation. There were multiple parallels between NWD1 remodeling of stem cells and lineages with pathogenic mechanisms in human inflammatory bowel disease, also pro-tumorigenic. Moreover, the shift to alternate stem cells reflects that the balance between Lgr5 positive and negative stem cells in supporting human colon tumors is determined by environmental influences. Stem cell and lineage plasticity in response to nutrients supports historic concepts of homeostasis as a continual adaptation to environment, with the human mucosa likely in constant flux in response to changing nutrient exposures. Implications: Although oncogenic mutations provide a competitive advantage to intestinal epithelial cells in clonal expansion, the competition is on a playing field dynamically sculpted by the nutritional environment, influencing which cells dominate in mucosal maintenance and tumorigenesis.
Enhanced Utilization of Induced Pluripotent Stem Cell–Derived Human Intestinal Organoids Using Microengineered Chips

Cell Mol Gastroenterol Hepatol

2017 Dec 29

Workman MJ, Gleeson J, Troisi EJ, Estrada HQ, Kerns SJ, Hinojosa CD, Hamilton GA, Targan SR, Svendsen CN, Barrett RJ.
PMID: - | DOI: 10.1016/j.jcmgh.2017.12.008

Background and Aims

Human intestinal organoids derived from induced pluripotent stem cells have tremendous potential to elucidate the intestinal epithelium’s role in health and disease, but it is difficult to directly assay these complex structures. This study sought to make this technology more amenable for study by obtaining epithelial cells from induced pluripotent stem cell–derived human intestinal organoids and incorporating them into small microengineered Chips. We then investigated if these cells within the Chip were polarized, had the 4 major intestinal epithelial subtypes, and were biologically responsive to exogenous stimuli.

Methods

Epithelial cells were positively selected from human intestinal organoids and were incorporated into the Chip. The effect of continuous media flow was examined. Immunocytochemistry and in situ hybridization were used to demonstrate that the epithelial cells were polarized and possessed the major intestinal epithelial subtypes. To assess if the incorporated cells were biologically responsive, Western blot analysis and quantitative polymerase chain reaction were used to assess the effects of interferon (IFN)-γ, and fluorescein isothiocyanate–dextran 4 kDa permeation was used to assess the effects of IFN-γ and tumor necrosis factor-α on barrier function.

Results

The optimal cell seeding density and flow rate were established. The continuous administration of flow resulted in the formation of polarized intestinal folds that contained Paneth cells, goblet cells, enterocytes, and enteroendocrine cells along with transit-amplifying and LGR5+ stem cells. Administration of IFN-γ for 1 hour resulted in the phosphorylation of STAT1, whereas exposure for 3 days resulted in a significant upregulation of IFN-γ related genes. Administration of IFN-γ and tumor necrosis factor-α for 3 days resulted in an increase in intestinal permeability.

Conclusions

We demonstrate that the Intestine-Chip is polarized, contains all the intestinal epithelial subtypes, and is biologically responsive to exogenous stimuli. This represents a more amenable platform to use organoid technology and will be highly applicable to personalized medicine and a wide range of gastrointestinal conditions.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?