Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for LGR5

ACD can configure probes for the various manual and automated assays for LGR5 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for LGR5 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (72)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (59) Apply Lgr5 filter
  • Axin2 (9) Apply Axin2 filter
  • OLFM4 (8) Apply OLFM4 filter
  • OLFM4 (7) Apply OLFM4 filter
  • ASCL2 (5) Apply ASCL2 filter
  • Sox9 (3) Apply Sox9 filter
  • GLI1 (3) Apply GLI1 filter
  • Lgr6 (3) Apply Lgr6 filter
  • Wnt2b (3) Apply Wnt2b filter
  • Lgr4 (3) Apply Lgr4 filter
  • ASCL2 (3) Apply ASCL2 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt4 (2) Apply Wnt4 filter
  • Wnt7b (2) Apply Wnt7b filter
  • BMI1 (2) Apply BMI1 filter
  • Rspo1 (2) Apply Rspo1 filter
  • Rspo3 (2) Apply Rspo3 filter
  • Wnt5a (2) Apply Wnt5a filter
  • EPHB2 (2) Apply EPHB2 filter
  • SMOC2 (2) Apply SMOC2 filter
  • LRIG1 (2) Apply LRIG1 filter
  • WNT2 (2) Apply WNT2 filter
  • Alpi (2) Apply Alpi filter
  • THBS1 (2) Apply THBS1 filter
  • ERBB2 (1) Apply ERBB2 filter
  • SOX2 (1) Apply SOX2 filter
  • Dkk3 (1) Apply Dkk3 filter
  • Wnt16 (1) Apply Wnt16 filter
  • Wnt1 (1) Apply Wnt1 filter
  • Wnt6 (1) Apply Wnt6 filter
  • Wnt7a (1) Apply Wnt7a filter
  • egfp (1) Apply egfp filter
  • CD34 (1) Apply CD34 filter
  • Rspo2 (1) Apply Rspo2 filter
  • Rspo4 (1) Apply Rspo4 filter
  • Atoh1 (1) Apply Atoh1 filter
  • Gif (1) Apply Gif filter
  • CD44 (1) Apply CD44 filter
  • Wdr43 (1) Apply Wdr43 filter
  • CLU (1) Apply CLU filter
  • Dkk1 (1) Apply Dkk1 filter
  • CSF1R (1) Apply CSF1R filter
  • KRT79 (1) Apply KRT79 filter
  • EGF (1) Apply EGF filter
  • EGFR (1) Apply EGFR filter
  • EREG (1) Apply EREG filter
  • HES1 (1) Apply HES1 filter
  • Notch1 (1) Apply Notch1 filter
  • Cpt1a (1) Apply Cpt1a filter

Product

  • RNAscope 2.5 HD Red assay (15) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (11) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (10) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (7) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • (-) Remove Stem Cells filter Stem Cells (72)
  • Cancer (25) Apply Cancer filter
  • Development (4) Apply Development filter
  • Inflammation (4) Apply Inflammation filter
  • Developmental (3) Apply Developmental filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • Diet (1) Apply Diet filter
  • Gastric stromal cells (1) Apply Gastric stromal cells filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious Disease (1) Apply Infectious Disease filter

Category

  • Publications (72) Apply Publications filter
Differential epithelial and stromal LGR5 expression in ovarian carcinogenesis

Scientific reports

2022 Jul 01

Kim, H;Lee, DH;Park, E;Myung, JK;Park, JH;Kim, DI;Kim, SI;Lee, M;Kim, Y;Park, CM;Hyun, CL;Maeng, YH;Lee, C;Jang, B;
PMID: 35778589 | DOI: 10.1038/s41598-022-15234-2

Lgr5 has been identified as a marker of the stem/progenitor cells in the murine ovary and oviduct by lineage tracing. However, little is known regarding LGR5 expression or its functional significance in human ovary tissues. Here, using RNA in situ hybridization and/or immunohistochemistry, we thoroughly investigated LGR5 expression in normal human ovaries, fallopian tubes and various ovarian tumors. We discovered that LGR5 expression is negligible in the human ovary surface epithelium, whereas ovarian stromal cells normally express low levels of LGR5. Remarkably, fallopian tube epithelium, inclusion cysts and serous cystadenomas with a Müllerian phenotype expressed high levels of LGR5, and LGR5 expression was restricted to PAX8+/FOXJ1- secretory cells of the tubal epithelium. Strong stromal LGR5 expression without epithelial LGR5 expression was consistently observed in the path from serous cystadenoma to serous borderline tumor to low grade serous carcinoma (LGSC). Unlike LGSC, high grade serous carcinoma (HGSC), clear cell carcinoma, endometrioid carcinomas displayed various epithelial-stromal LGR5 expression. Notably, high levels of LGR5 expression were observed in serous tubal intraepithelial carcinoma, which slightly declined in invasive HGSC. LGR5 expression was significantly associated with improved progression-free survival in HGSC patients. Moreover, in vitro assays demonstrated that LGR5 expression suppressed tumor proliferation and migratory capabilities. Taken together, these findings indicate a tumor-suppressive role for LGR5 in the progression of HGSC.
A conditional transgenic mouse line for targeted expression of the stem cell marker LGR5

Dev Biol. 2015 May 20.

Norum HJ, Bergström Å, Andersson BA, Kuiper RV, Hoelzl MA, Sørlie T, Toftgård R.
PMID: 25990088 | DOI: canprevres.0090.2015.

LGR5 is a known marker of embryonic and adult stem cells in several tissues. In a mouse model, Lgr5+ cells have shown tumour-initiating properties, while in human cancers, such as basal cell carcinoma and colon cancer, LGR5 expression levels are increased: however, the effect of increased LGR5 expression is not fully understood. To study the effects of elevated LGR5 expression levels we generated a novel tetracycline-responsive, conditional transgenic mouse line expressing human LGR5, designated TRELGR5. In this transgenic line, LGR5 expression can be induced in any tissue depending on the expression pattern of the chosen transcriptional regulator. For the current study, we used transgenic mice with a tetracycline-regulated transcriptional transactivator linked to the bovine keratin 5 promoter (K5tTA) to drive expression of LGR5 in the epidermis. As expected, expression of human LGR5 was induced in the skin of double transgenic mice (K5tTA;TRELGR5). Inducing LGR5 expression during embryogenesis and early development resulted in macroscopically and microscopically detectable phenotypic changes, including kink tail, sparse fur coat and enlarged sebaceous glands. The fur and sebaceous gland phenotypes were reversible upon discontinued expression of transgenic LGR5, but this was not observed for the kink tail phenotype. There were no apparent phenotypic changes if LGR5 expression was induced at three weeks of age. The results demonstrate that increased expression of LGR5 during embryogenesis and the neonatal period alter skin development and homeostasis.
Visualization and targeting of LGR5+ human colon cancer stem cells.

Nature

2017 May 11

Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, Date S, Sugimoto S, Kanai T, Sato T.
PMID: 28355176 | DOI: 10.1038/nature22081

The cancer stem cell (CSC) theory highlights a self-renewing subpopulation of cancer cells that fuels tumour growth. The existence of human CSCs is mainly supported by xenotransplantation of prospectively isolated cells, but their clonal dynamics and plasticity remain unclear. Here, we show that human LGR5+ colorectal cancer cells serve as CSCs in growing cancer tissues. Lineage-tracing experiments with a tamoxifen-inducible Cre knock-in allele of LGR5 reveal the self-renewal and differentiation capacity of LGR5+ tumour cells. Selective ablation of LGR5+CSCs in LGR5-iCaspase9 knock-in organoids leads to tumour regression, followed by tumour regrowth driven by re-emerging LGR5+ CSCs. KRT20 knock-in reporter marks differentiated cancer cells that constantly diminish in tumour tissues, while reverting to LGR5+ CSCs and contributing to tumour regrowth after LGR5+ CSC ablation. We also show that combined chemotherapy potentiates targeting of LGR5+CSCs. These data provide insights into the plasticity of CSCs and their potential as a therapeutic target in human colorectal cancer.

Characterization of LGR5 stem cells in colorectal adenomas and carcinomas.

Sci Rep. 2015 Mar 2;5:8654.

Baker AM, Graham TA, Elia G, Wright NA, Rodriguez-Justo M.
PMID: 25728748 | DOI: 10.1038/srep08654

LGR5 is known to be a stem cell marker in the murine small intestine and colon, however the localization of LGR5 in human adenoma samples has not been examined in detail, and previous studies have been limited by the lack of specific antibodies. Here we used in situ hybridization to specifically examine LGR5 mRNA expression in a panel of human adenoma and carcinoma samples (n = 66). We found that a small number of cells express LGR5 at the base of normal colonic crypts. We then showed that conventional adenomas widely express high levels of LGR5, and there is no evidence of stereotypic cellular hierarchy. In contrast, serrated lesions display basal localization of LGR5, and the cellular hierarchy resembles that of a normal crypt. Moreover, ectopic crypts found in traditional serrated adenomas show basal LGR5 mRNA, indicating that they replicate the stem cell organization of normal crypts with the development of a cellular hierarchy. These data imply differences in the stem cell dynamics between the serrated and conventional pathways of colorectal carcinogenesis. Furthermore we noted high LGR5 expression in invading cells, with later development of a stem cell niche in adenocarcinomas of all stages.
Characterization of LGR5 expression in poorly differentiated colorectal carcinoma with mismatch repair protein deficiency

BMC Cancer

2020 Apr 15

Nakajima T, Uehara T, Iwaya M, Kobayashi Y, Maruyama Y, Ota H
PMID: 32293346 | DOI: 10.1186/s12885-020-06791-8

BACKGROUND: Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a promising intestinal stem cell and carcinoma stem cell marker. We examined the relationship between mismatch repair (MMR) protein deficiency and LGR5 expression in poorly differentiated (PD) colorectal carcinoma (CRC). METHODS: In 29 cases of PD-CRC, deficiencies in MMR proteins (MLH1, PMS2, MSH2, MSH6) and ?-catenin expression were identified by immunohistochemistry (IHC). LGR5 expression was examined by the RNAscope assay in tissue microarrays. RESULTS: LGR5 H-scores in MMR-deficient (MMR-D) cases were significantly lower than those in MMR-proficient (MMR-P) cases (P?=?0.0033). Nuclear ?-catenin IHC scores in MMR-D cases were significantly lower than those in MMR-P cases (P?=?0.0024). In all cases, there was a positive correlation between LGR5 H-score and nuclear ?-catenin IHC score (r?=?0.6796, P?
Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell.

Nature

2019 Apr 24

Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, Ouladan S, Fink M, Barutcu S, Trcka D, Shen J, Chan K, Wrana JL, Gregorieff A.
PMID: 31019301 | DOI: 10.1038/s41586-019-1154-y

The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.

Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach.

Nat Cell Biol.

2017 Jun 05

Leushacke M, Tan SH, Wong A, Swathi Y, Hajamohideen A, Tan LT, Goh J, Wong E, Denil SLIJ, Murakami K, Barker N.
PMID: 28581476 | DOI: 10.1038/ncb3541

The daily renewal of the corpus epithelium is fuelled by adult stem cells residing within tubular glands, but the identity of these stem cells remains controversial. Lgr5 marks homeostatic stem cells and 'reserve' stem cells in multiple tissues. Here, we report Lgr5 expression in a subpopulation of chief cells in mouse and human corpus glands. Using a non-variegated Lgr5-2A-CreERT2 mouse model, we show by lineage tracing that Lgr5-expressing chief cells do not behave as corpus stem cells during homeostasis, but are recruited to function as stem cells to effect epithelial renewal following injury by activating Wnt signalling. Ablation of Lgr5+ cells severely impairs epithelial homeostasis in the corpus, indicating an essential role for these Lgr5+ cells in maintaining the homeostatic stem cell pool. We additionally define Lgr5+ chief cells as a major cell-of-origin of gastric cancer. These findings reveal clinically relevant insights into homeostasis, repair and cancer in the corpus.

Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche?

Hum Reprod.

2018 Apr 10

Tempest N, Baker AM, Wright NA, Hapangama DK.
PMID: 29648645 | DOI: 10.1093/humrep/dey083

Abstract

STUDY QUESTION:

Is human endometrial leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) gene expression limited to the postulated epithelial stem cell niche, stratum basalis glands, and is it hormonally regulated?

SUMMARY ANSWER:

LGR5 expressing cells are not limited to the postulated stem cell niche but LGR5 expression is hormonally regulated.

WHAT IS KNOWN ALREADY:

The human endometrium is a highly regenerative tissue; however, endometrial epithelial stem cell markers are yet to be confirmed. LGR5 is a marker of stem cells in various epithelia.

STUDY DESIGN, SIZE, DURATION:

The study was conducted at a University Research Institute. Endometrial samples from 50 healthy women undergoing benign gynaecological surgery with no endometrial pathology at the Liverpool Women's hospital were included and analysed in the following six sub-categories; proliferative, secretory phases of menstrual cycle, postmenopausal, those using oral and local progestagens and samples for in vitro explant culture.

PARTICIPANTS/MATERIALS, SETTING, METHODS:

In this study, we used the gold standard method, in situ hybridisation (ISH) along with qPCR and a systems biology approach to study the location of LGR5 gene expression in full thickness human endometrium and Fallopian tubes. The progesterone regulation of endometrial LGR5 was examined in vivo and in short-term cultured endometrial tissue explants in vitro. LGR5 expression was correlated with epithelial proliferation (Ki67), and expression of previously reported epithelia progenitor markers (SOX9 and SSEA-1) immunohistochemistry (IHC).

MAIN RESULTS AND THE ROLE OF CHANCE:

LGR5 gene expression was significantly higher in the endometrial luminal epithelium than in all other epithelial compartments in the healthy human endometrium, including the endometrial stratum basalis (P < 0.05). The strongest SSEA-1 and SOX9 staining was observed in the stratum basalis glands, but the general trend of SOX9 and SSEA-1 expression followed the same cyclical pattern of expression as LGR5. Stratum functionalis epithelial Ki67-LI and LGR5 expression levels correlated significantly (r = 0.74, P = 0.01), however, they did not correlate in luminal and stratum basalis epithelium (r = 0.5 and 0.13, respectively). Endometrial LGR5 demonstrates a dynamic spatiotemporal expression pattern, suggesting hormonal regulation. Oral and local progestogens significantly reduced endometrial LGR5 mRNA levels compared with women not on hormonal treatment (P < 0.01). Our data were in agreement with in silico analysis of published endometrial microarrays.

LARGE SCALE DATA:

We did not generate our own large scale data but interrogated publically available large scale data sets.

LIMITATIONS, REASONS FOR CAUTION:

In the absence of reliable antibodies for human LGR5 protein and validated lineage markers for the various epithelial populations that potentially exist within the endometrium, our study does not formally characterise or examine the functional ability of the resident LGR5+ cells as multipotent.

WIDER IMPLICATIONS OF THE FINDINGS:

These data will facilitate future lineage tracing studies in the human endometrial epithelium; to identify the location of stem cells and further complement the in vitro functional studies, to confirm if the LGR5 expressing epithelial cells indeed represent the epithelial stem cell population.

Identification, Isolation, and Characterization of Human LGR5-positive Colon Adenoma Cells

bioRxiv

2017 Mar 18

Dame MK, Attili D, McClintock SD, Dedhia PH, Ouilette P, Hardt O, Chin AM, Xue X, Laliberte J, Katz EL, Newsome GM, Hill D, Miller A, Agorku D, Altheim CH, Bosio A, Simon B, Samuelson LC, Stoerker JA, Appelman HD, Varani J, Wicha MS, Brenner DE, Shah YM,
PMID: - | DOI: 10.1101/118034

The intestine is maintained by stem cells, marked by LGR5 expression, located at the base of crypts. Genetically engineered mouse models have provided information about marker genes and stem cell pathways. Less is known about human intestinal stem cells due to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas, adenocarcinomas, and normal colon, which we analyzed for variants in 71 colorectal cancer (CRC) associated genes. Normal and neoplastic colon tissue organoids were analyzed for LGR5 expression by immunohistochemistry. LGR5-positive cells were isolated from 4 adenoma organoid lines and analyzed by RNA-sequencing. LGR5 expression in epithelium and stroma was associated with tumor stage. Integrating functional experiments with RNA-seq data from LGR5-positive adenoma organoid cells and normal colon, we associated expression of CRC-specific genes, including DKK4, with LGR5 expression. This system can be used to study LGR5-expressing cells in human tissue homeostasis and carcinogenesis.

Reconstruction of the Human Colon Epithelium In Vivo.

Cell Stem Cell.

2017 Dec 21

Sugimoto S, Ohta Y, Fujii M, Matano M, Shimokawa M, Nanki K, Date S, Nishikori S, Nakazato Y, Nakamura T, Kanai T, Sato T.
PMID: 29290616 | DOI: 10.1016/j.stem.2017.11.012

Genetic lineage tracing has revealed that Lgr5+ murine colon stem cells (CoSCs) rapidly proliferate at the crypt bottom. However, the spatiotemporal dynamics of human CoSCs in vivo have remained experimentally intractable. Here we established an orthotopic xenograft system for normal human colon organoids, enabling stable reconstruction of the human colon epithelium in vivo. Xenografted organoids were prone to displacement by the remaining murine crypts, and this could be overcome by complete removal of the mouse epithelium. Xenografted organoids formed crypt structures distinctively different from surrounding mouse crypts, reflecting their human origin. Lineage tracing using CRISPR-Cas9 to engineer an LGR5-CreER knockin allele demonstrated self-renewal and multipotency of LGR5+ CoSCs. In contrast to the rapidly cycling properties of mouse Lgr5+ CoSCs, human LGR5+ CoSCs were slow-cycling in vivo. This organoid-based orthotopic xenograft model enables investigation of the functional behaviors of human CoSCs in vivo, with potential therapeutic applications in regenerative medicine.

Atoh1+ secretory progenitors possess renewal capacity independent of Lgr5+ cells during colonic regeneration.

EMBO J. 2019 Jan 11.

2019 Jan 11

Castillo-Azofeifa D, Fazio EN, Nattiv R, Good HJ, Wald T, Pest MA, de Sauvage FJ, Klein OD, Asfaha S.
PMID: 30635334 | DOI: 10.15252/embj.201899984

During homeostasis, the colonic epithelium is replenished every 3-5 days by rapidly cycling Lgr5 + stem cells. However, various insults can lead to depletion of Lgr5 + stem cells, and colonic epithelium can be regenerated from Lgr5-negative cells. While studies in the small intestine have addressed the lineage identity of the Lgr5-negative regenerative cell population, in the colon this question has remained unanswered. Here, we set out to identify which cell(s) contribute to colonic regeneration by performing genetic fate-mapping studies of progenitor populations in mice. First, using keratin-19 (Krt19) to mark a heterogeneous population of cells, we found that Lgr5-negative cells can regenerate colonic crypts and give rise to Lgr5 + stem cells. Notch1 + absorptive progenitor cells did not contribute to epithelial repair after injury, whereas Atoh1 + secretory progenitors did contribute to this process. Additionally, while colonic Atoh1 + cells contributed minimally to other lineages during homeostasis, they displayed plasticity and contributed to epithelial repair during injury, independent of Lgr5 + cells. Our findings suggest that promotion of secretory progenitor plasticity could enable gut healing in colitis.
LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation

Cellular and Molecular Gastroenterology and Hepatology

2016 Jun 22

Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR.
PMID: - | DOI: 10.1016/j.jcmgh.2016.06.002

Background & Aims

The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic of contexts in mice. However, the function ofLGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail.

Methods

We interrogated the function and expression of LGR family members using human pluripotent stem cell–derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5–creER–eGFP mice.

Results

We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human–mouse species-specific differences at later time points of embryonic development.

Conclusions

Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?