Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (44)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (44)
  • GFRA1 (2) Apply GFRA1 filter
  • PPIB (2) Apply PPIB filter
  • SARS-CoV-2 (2) Apply SARS-CoV-2 filter
  • Piezo2 (1) Apply Piezo2 filter
  • CCKAR (1) Apply CCKAR filter
  • GAPDH (1) Apply GAPDH filter
  • Cd8a (1) Apply Cd8a filter
  • CD34 (1) Apply CD34 filter
  • MET (1) Apply MET filter
  • GFAP (1) Apply GFAP filter
  • GLP1R (1) Apply GLP1R filter
  • Scn10a (1) Apply Scn10a filter
  • PVALB (1) Apply PVALB filter
  • Scn1a (1) Apply Scn1a filter
  • Cdh13 (1) Apply Cdh13 filter
  • MDM2 (1) Apply MDM2 filter
  • MUC2 (1) Apply MUC2 filter
  • OLFM4 (1) Apply OLFM4 filter
  • POLR2A (1) Apply POLR2A filter
  • Esr2 (1) Apply Esr2 filter
  • Chat (1) Apply Chat filter
  • Gpr17 (1) Apply Gpr17 filter
  • Npy2r (1) Apply Npy2r filter
  • Piezo1 (1) Apply Piezo1 filter
  • GPR65 (1) Apply GPR65 filter
  • Trpv1 (1) Apply Trpv1 filter
  • Foxo1 (1) Apply Foxo1 filter
  • Slc17a7 (1) Apply Slc17a7 filter
  • SIV (1) Apply SIV filter
  • Vip (1) Apply Vip filter
  • her1 (1) Apply her1 filter
  • MAL (1) Apply MAL filter
  • QRFPR (1) Apply QRFPR filter
  • Ntsr1 (1) Apply Ntsr1 filter
  • her7 (1) Apply her7 filter
  • HPV E6/E7 (1) Apply HPV E6/E7 filter
  • Adamts1 (1) Apply Adamts1 filter
  • Mab21l1 (1) Apply Mab21l1 filter
  • CLEC9A (1) Apply CLEC9A filter
  • FABP1 (1) Apply FABP1 filter
  • cyp4v3 (1) Apply cyp4v3 filter
  •  Kit (1) Apply  Kit filter
  • Perforin (1) Apply Perforin filter
  • IFNλ-1 (1) Apply IFNλ-1 filter
  • Wnt3  (1) Apply Wnt3  filter
  • Httr3b (1) Apply Httr3b filter
  • Human Genome (1) Apply Human Genome filter
  • e37a-Cacna1b (1) Apply e37a-Cacna1b filter

Product

  • RNAscope (29) Apply RNAscope filter
  • TBD (6) Apply TBD filter
  • Basescope (3) Apply Basescope filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Other: Methods filter Other: Methods (44)
  • Neuroscience (2) Apply Neuroscience filter
  • Protocols (2) Apply Protocols filter
  • single-cell and spatial multi-omics (2) Apply single-cell and spatial multi-omics filter
  • Transcriptomics (2) Apply Transcriptomics filter
  • Cancer (1) Apply Cancer filter
  • Carcinogenesis (1) Apply Carcinogenesis filter
  • Circadian Rhythm (1) Apply Circadian Rhythm filter
  • Disease Development (1) Apply Disease Development filter
  • host-parasite interactions (1) Apply host-parasite interactions filter
  • Malaria (1) Apply Malaria filter
  • Microscopy (1) Apply Microscopy filter
  • muscle pathologies (1) Apply muscle pathologies filter
  • NGS (1) Apply NGS filter
  • Plant Science (1) Apply Plant Science filter
  • rabbit hemorrhagic disease virus 2 (1) Apply rabbit hemorrhagic disease virus 2 filter
  • Reproduction (1) Apply Reproduction filter
  • Software Tools (1) Apply Software Tools filter
  • Tools (1) Apply Tools filter
  • Zoological Disease (1) Apply Zoological Disease filter

Category

  • Publications (44) Apply Publications filter
Measuring Pattern Separation in Hippocampus by in Situ Hybridization

Current protocols

2022 Aug 01

Eom, K;Lee, HR;
PMID: 35980141 | DOI: 10.1002/cpz1.522

Distinguishing different contexts is thought to involve a form of pattern separation that minimizes overlap between neural ensembles representing similar experiences. Theoretical models suggest that the dentate gyrus (DG) segregates cortical input patterns before relaying its discriminated output patterns to the CA3 hippocampal field. This suggests that the evaluation of neural ensembles in DG and CA3 could be an important means to investigate the process of pattern separation. In the past, measurement of entorhinal cortex (EC), DG, and CA3 ensembles was largely dependent upon in vivo electrophysiological recording, which is technically difficult. This protocol provides a method to instead measure pattern separation by a molecular method that provides direct spatial resolution at the cellular level.
Spatially Resolved and Highly Multiplexed Protein and RNA In Situ Detection by Combining CODEX With RNAscope In Situ Hybridization

The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society

2022 Jul 16

Cheng, Y;Burrack, RK;Li, Q;
PMID: 35848523 | DOI: 10.1369/00221554221114174

Highly multiplexed protein and RNA in situ detection on a single tissue section concurrently is highly desirable for both basic and applied biomedical research. CO-detection by inDEXing (CODEX) is a new and powerful platform to visualize up to 60 protein biomarkers in situ, and RNAscope in situ hybridization (RNAscope) is a novel RNA detection system with high sensitivity and unprecedent specificity at a single-cell level. Nevertheless, to our knowledge, the combination of CODEX and RNAscope remained unreported until this study. Here, we report a simple and reproducible combination of CODEX and RNAscope. We also determined the cross-reactivities of CODEX anti-human antibodies to rhesus macaques, a widely used animal model of human disease.
Protocol for the use of signal amplification by exchange reaction-fluorescence in situ hybridization on adult formalin-fixed paraffin-embedded mouse lung tissue

STAR protocols

2023 Jun 09

Warren, R;Shaik, A;Teubner, L;Lyu, H;De Langhe, S;
PMID: 37302070 | DOI: 10.1016/j.xpro.2023.102353

Fluorescence in situ hybridization (FISH) is a useful tool for analyzing RNA expression, but difficulties arise with low-abundance RNA and in tissues that are formalin-fixed paraffin-embedded (FFPE) because reagents can be expensive. In this protocol, we adapt a previously designed FISH amplification protocol (SABER [signal amplification by exchange reaction]) for adult mouse FFPE lung sections by using probes that are extended and branched to amplify the signal. We combine FISH and immunostaining to identify cell-specific RNA. For complete details on the use and execution of this protocol, please refer to Kishi et al.1 and Lyu et al.2.
Multiomics Technologies Capture More Particulars, Reveal More Grandeur

Genetic Engineering & Biotechnology News

2023 Jun 01

LeMieux, J;
| DOI: 10.1089/gen.43.06.13

A patient's genome, Van Eyk noted, contains information about that patient's disease predispositions and drug responses. She added, however, that better information about disease risks and drug responses could be gleaned from the proteome. Although there are only so many protein-encoding genes, the intricacies of protein expression generate various kinds of proteomic information in abundance. According to Van Eyk, information about disease-induced modifications, isoforms, concentration changes, and chemical complexity can inform predictions of what will happen in the body, in the context of the body and the environment. She suggests that a proteomics approach—one that would involve monitoring of not just one protein at a time, but thousands—could generate valuable clinical insights.
Multiscale microscopy to decipher plant cell structure and dynamics

The New phytologist

2022 Dec 07

Cui, Y;Zhang, X;Li, X;Lin, J;
PMID: 36477856 | DOI: 10.1111/nph.18641

New imaging methodologies with high contrast and molecular specificity allow researchers to analyze dynamic processes in plant cells at multiple scales, from single protein and RNA molecules to organelles and cells, to whole organs and tissues. These techniques produce informative images and quantitative data on molecular dynamics to address questions that cannot be answered by conventional biochemical assays. Here, we review selected microscopy techniques, focusing on their basic principles and applications in plant science, discussing the pros and cons of each technique, and introducing methods for quantitative analysis. This review thus provides guidance for plant scientists in selecting the most appropriate techniques to decipher structures and dynamic processes at different levels, from protein dynamics to morphogenesis.
Gene expression data visualization tool on the o²S²PARC platform

F1000Research

2022 Nov 07

Ben Aribi, H;Ding, M;Kiran, A;
| DOI: 10.12688/f1000research.126840.1

Background: The identification of differentially expressed genes and their associated biological processes, molecular function, and cellular components are important for genetic diseases studies because they present potential biomarkers and therapeutic targets. Methods: In this study, we developed an o²S²PARC template representing an interactive pipeline for the gene expression data visualization and ontologies data analysis and visualization.  To demonstrate the usefulness of the tool, we performed a case study on a publicly available dataset. Results: The tool enables users to identify the differentially expressed genes (DEGs) and visualize them in a volcano plot format. The ontologies associated with the DEGs are determined and visualized in barplots. Conclusions: The “Expression data visualization” template is publicly available on the o²S²PARC platform.
Efficient RNA and RNA-protein co-detection in 3D colonoids by whole-mount staining

STAR protocols

2022 Dec 16

Atanga, R;Parra, AS;In, JG;
PMID: 36313534 | DOI: 10.1016/j.xpro.2022.101775

Here, we describe a protocol to visualize RNA oligos and proteins independently or together using a combination of fluorescence in situ hybridization (FISH) and immunofluorescence in human colonoids, expanding on previously published research. Whole-mount staining is used to preserve the colonoid structure and fix onto glass slides. We describe procedures for efficient plating, fixation, and preservation of the colonoids. This workflow can be adapted to 3D organoid models from other tissues or organisms. For complete details on the use and execution of this protocol, please refer to In et al. (2020).
Recent advances in single-cell subcellular sampling

Chemical communications (Cambridge, England)

2023 May 02

Sahota, A;Monteza Cabrejos, A;Kwan, Z;Paulose Nadappuram, B;Ivanov, AP;Edel, JB;
PMID: 37039236 | DOI: 10.1039/d3cc00573a

Recent innovations in single-cell technologies have opened up exciting possibilities for profiling the omics of individual cells. Minimally invasive analysis tools that probe and remove the contents of living cells enable cells to remain in their standard microenvironment with little impact on their viability. This negates the requirement of lysing cells to access their contents, an advancement from previous single-cell manipulation methods. These novel methods have the potential to be used for dynamic studies on single cells, with many already providing high intracellular spatial resolution. In this article, we highlight key technological advances that aim to remove the contents of living cells for downstream analysis. Recent applications of these techniques are reviewed, along with their current limitations. We also propose recommendations for expanding the scope of these technologies to achieve comprehensive single-cell tracking in the future, anticipating the discovery of subcellular mechanisms and novel therapeutic targets and treatments, ultimately transforming the fields of spatial transcriptomics and personalised medicine.
Analysis of mitochondrial double-stranded RNAs in human cells

STAR Protocols

2023 Mar 01

Kim, S;Yoon, J;Lee, K;Kim, Y;
| DOI: 10.1016/j.xpro.2022.102007

Human mitochondrial genome is transcribed bidirectionally, generating long complementary RNAs that can form double-stranded RNAs (mt-dsRNAs). When released to the cytosol, these mt-dsRNAs can activate antiviral signaling. Here, we present a detailed protocol for the analysis of mt-dsRNA expression. The protocol provides three approaches that can complement one another in examining mt-dsRNAs. While the described protocol is optimized for human cells, this approach can be adapted for use in other animal cell lines and tissue samples. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).1
Double Immunohistochemical Staining on Formalin-Fixed Paraffin-Embedded Tissue Samples to Study Vascular Co-option

Methods in molecular biology (Clifton, N.J.)

2022 Sep 26

Annese, T;Errede, M;De Giorgis, M;Lorusso, L;Tamma, R;Ribatti, D;
PMID: 36161411 | DOI: 10.1007/978-1-0716-2703-7_8

Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31+ vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells. Results can be quantified by the Aperio Colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.
Targeting Alternative Splicing for Therapeutic Interventions

Methods in molecular biology (Clifton, N.J.)

2022 Jul 27

Centa, JL;Hastings, ML;
PMID: 35895256 | DOI: 10.1007/978-1-0716-2521-7_2

Targeting of pre-mRNA splicing has yielded a rich variety of strategies for altering gene expression as a treatment for disease. The search for therapeutics that can modulate splicing has been dominated by antisense oligonucleotides (ASOs) and small molecule compounds, with each platform achieving remarkably effective results in the clinic. The success of RNA-targeting drugs has led to the exploration of new strategies to expand the repertoire of this type of therapeutic. Here, we discuss some of the more common causes of faulty gene expression and provide examples of approaches that have been developed to target and correct these defects for therapeutic value.
Navigating the cellular landscape in tissue: Recent advances in defining the pathogenesis of human disease

Computational and Structural Biotechnology Journal

2022 Sep 15

Chen, H;Palendira, U;Feng, C;
| DOI: 10.1016/j.csbj.2022.09.005

Over the past decade, our understanding of human diseases has rapidly grown from the rise of single-cell spatial biology. While conventional tissue imaging has focused on visualizing morphological features, the development of multiplex tissue imaging from fluorescence-based methods to DNA- and mass cytometry-based methods has allowed visualization of over 60 markers on a single tissue section. The advancement of spatial biology with a single-cell resolution has enabled the visualization of cell-cell interactions and the tissue microenvironment, a crucial part to understanding the mechanisms underlying pathogenesis. Alongside the development of extensive marker panels which can distinguish distinct cell phenotypes, multiplex tissue imaging has facilitated the analysis of high dimensional data to identify novel biomarkers and therapeutic targets, while considering the spatial context of the cellular environment. This mini-review provides an overview of the recent advancements in multiplex imaging technologies and examines how these methods have been used in exploring pathogenesis and biomarker discovery in cancer, autoimmune and infectious diseases.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?