Blin, M;Rétaux, S;Torres-Paz, J;
| DOI: 10.1007/978-1-0716-2875-1_13
Gene expression analyses by molecular histology are a crucial step in understanding gene function in any model organism. In the teleost _Astyanax mexicanus_, here we describe in detail the method we have developed to perform double fluorescent in situ hybridization on whole-mount samples. As an illustration, in the result section, we present an analysis of the expression patterns of four mRNAs expressed in the hypothalamus of the surface and cave morphs of _A. mexicanus_ at 3.5 days postfertilization, three neuropeptides (_npy_, _pomca_, _agrp_) and one transcription factor (_isl1_). Confocal imaging after fluorescent in situ hybridization allows counting cells in distinct but closely related hypothalamic areas. The step-by-step protocol and the comprehensive table of reagents presented here will allow researchers to analyze gene expression in different structures and at various stages, from embryos to older larvae.
Biopreservation and biobanking
Kim, K;Ylaya, K;Perry, C;Lee, MY;Kim, JW;Chung, JY;Hewitt, SM;
PMID: 36264172 | DOI: 10.1089/bio.2022.0090
Although the immunogenicity of formalin-fixed paraffin-embedded tissue sections can decrease during storage and transport, the exact mechanism of antigenic loss and how to prevent it are not clear. Herein, we investigated changes in the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), E-cadherin, and Ki-67 in human breast tissue microarray (TMA) tissue sections stored for up to 3 months in dry and wet conditions. The positive rates of ER and PR expression were minimally changed after 3 months of storage, but the Allred scores of ER and PR stored in humid conditions decreased remarkably in comparison to fresh-cut tissue. The HER-2 antigenicity and RNA integrity of breast TMA sections stored in dry conditions diminished gradually with storage time, whereas the immunoreactivity and RNA quality of HER-2 in humid conditions decreased sharply as storage length increased. The area and intensity of E-cadherin staining in tissue sections stored in dry conditions did not change significantly and were minimally changed after 3 months, respectively. In contrast, the area and intensity of E-cadherin staining in tissue sections stored in humid conditions decreased significantly as storage length increased. Finally, the Ki-67 labeling index of tissue sections stored for 3 months in dry (9% decrease) and wet (31.9% decrease) conditions was decreased in comparison to fresh sections. In conclusion, these results indicate that water is a crucial factor for protein and RNA degradation in stored tissue sections, and detailed guidelines are required in the clinic.
Methods in molecular biology (Clifton, N.J.)
Rath, MF;Møller, M;
PMID: 36180679 | DOI: 10.1007/978-1-0716-2593-4_10
Radiochemical in situ hybridization enables detection of gene expression in small areas of the brain, such as the developing pineal gland in rodents. The method combines determination of spatial and temporal gene expression profiles with semiquantitative analyses. We here describe the procedure of radiochemical in situ hybridization on the developing rat pineal gland ranging from preparation of fetal tissue for in situ hybridization to principles of quantification.
Methods in molecular biology (Clifton, N.J.)
Moissoglu, K;Lockett, SJ;Mili, S;
PMID: 36653713 | DOI: 10.1007/978-1-0716-2887-4_16
Localization of mRNAs at the front of migrating cells is a widely used mechanism that functionally supports efficient cell movement. It is observed in single cells on two-dimensional surfaces, as well as in multicellular three-dimensional (3D) structures and in tissue in vivo. 3D multicellular cultures can reveal how the topology of the extracellular matrix and cell-cell contacts influence subcellular mRNA distributions. Here we describe a method for mRNA imaging in an inducible system of collective cancer cell invasion. MDA-MB-231 cancer cell spheroids are embedded in Matrigel, induced to invade, and processed to image mRNAs with single-molecule sensitivity. An analysis algorithm is used to quantify and compare mRNA distributions at the front of invasive leader cells. The approach can be easily adapted and applied to analyze RNA distributions in additional settings where cells polarize along a linear axis.
BioEssays : news and reviews in molecular, cellular and developmental biology
Gautron, L;
PMID: 37264690 | DOI: 10.1002/bies.202300056
Immunohistochemistry is a commonly used technique in research and pathology laboratories worldwide. However, in recent years, there has been a significant decrease in the number of Pubmed entries using the term immunohistochemistry. This decline can be attributed to two factors: increased awareness of the issue of unreliable research antibodies and the availability of novel RNA in situ hybridization techniques. Using the example of immunohistochemistry, this text discusses the factors that can affect good laboratory and publishing practices, or their lack thereof.
Methods in molecular biology (Clifton, N.J.)
Wang, N;Li, X;Ding, Z;
PMID: 37191791 | DOI: 10.1007/978-1-0716-3163-8_6
The rapid emergence of spatial multi-omics technologies in recent years has revolutionized biomedical research. Among these, the Digital Spatial Profiler (DSP, commercialized by nanoString) has become one of the dominant technologies in spatial transcriptomics and proteomics and has assisted in deconvoluting complex biological questions. Based on our practical experience in the past 3 years with DSP, we share here a detailed hands-on protocol and key handling notes that will allow the broader community to optimize their work procedure.
Ruohan, Z;Yicheng, B;Jingying, Z;Mei, H;Xinyan, Z;Min, Y;Tengfei, D;Junjing, J;
| DOI: 10.1080/26895293.2023.2199140
In summary, with the continuous improvement of technology and methods, scRNA-seq is becoming an indispensable tool in many biomedical fields. It is predicted that single-cell multiplex technology will play a more powerful role in single-cell research of complex organs and tissues in the future. It is expected that the demand and application of scRNA-seq technology will increase greatly in the future, and the technology will become more refined, high-throughput, affordable, and easier to use in scientific research laboratories and clinical laboratories. Especially in the new era of precision medicine, the study of the characteristics of high intercellular heterogeneity and clonal evolution in the occurrence, development, and treatment of diseases brings hope for the accurate diagnosis and treatment of diseases. In particular, it can be used to monitor the progress, efficacy, and prognosis of hematological tumors, and is likely to find potential therapeutic targets, providing a basis for accurate diagnosis, dynamic monitoring, and individualized treatment of the disease. More importantly, innovative single-cell technology is expected to greatly promote the effective control of diseases in IVF and early pregnancy screening and diagnosis of chromosomal and genetic diseases by improving the efficiency and detection quality. Thus, scRNA-seq is of great significance to improve human genetic health.
Methods in molecular biology (Clifton, N.J.)
Bittman, EL;
PMID: 35610428 | DOI: 10.1007/978-1-0716-2249-0_13
The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker. In order to examine mechanisms by which it keeps time, entrains to periodic environmental signals (zeitgebers), and regulates subordinate oscillators elsewhere in the brain and in the periphery, a variety of molecular methods have been applied. Multiple label immunocytochemistry and in situ hybridization provide anatomical insights that complement physiological approaches (such as ex vivo electrophysiology and luminometry) widely used to study the SCN.The anatomical methods require interpretation of data gathered from groups of individual animals sacrificed at different time points. This imposes constraints on the design of the experiments that aim to observe changes that occur with circadian phase in free-running conditions. It is essential in such experiments to account for differences in the periods of the subjects. Nevertheless, it is possible to resolve intracellular colocalization and regional expression of functionally important transcripts and/or their peptide products that serve as neuromodulators or neurotransmitters. Armed with these tools and others, understanding of the mechanisms by which the hypothalamic pacemaker regulates circadian function is progressing apace.
ChemRxiv Analytical Chemistry
Robles-Remacho*, A;Sanchez-Martin, R;Diaz-Mochon*, J;
| DOI: 10.26434/chemrxiv-2023-n20f0
Spatial transcriptomics technologies are providing new insights to study gene expression, allowing researchers to investigate the spatial organization of transcriptomes in cells and tissues. This approach enables the creation of high-resolution maps of gene expression patterns within their native spatial context, adding an extra layer of information to bulk sequencing data. Spatial transcriptomics has expanded significantly in recent years and is making a notable impact on a range of fields, including tissue architecture, developmental biology, cancer, neurodegenerative and infectious diseases. The latest advancements in spatial transcriptomics have resulted in the development of highly multiplexed methods, transcriptomic-wide analysis, and single-cell resolution, utilizing diverse technological approaches. In this perspective, we provide a detailed analysis of the molecular foundations behind the main spatial transcriptomics technologies, including methods based on microdissection, in situ sequencing, single-molecule FISH, spatial capturing, selection of regions of interest and single-cell or nuclei dissociation. We contextualize the detection and capturing efficiency, strengths, limitations, tissue compatibility, and applications of these techniques, as well as provide information on data analysis. In addition, this perspective discusses future directions and potential applications of spatial transcriptomics, highlighting the importance of the continued development to promote widespread adoption of these techniques within the research community.
Histochemistry and cell biology
Kitazawa, S;Haraguchi, R;Takaoka, Y;Kitazawa, R;
PMID: 36418613 | DOI: 10.1007/s00418-022-02165-2
Since epigenetic modifications differ from cell to cell, detecting the DNA methylation status of individual cells is requisite. Therefore, it is important to conduct "morphology-based epigenetics research", in which the sequence-specific DNA methylation status is observed while maintaining tissue architecture. Here we demonstrate a novel histochemical technique that efficiently shows the presence of a single methylated cytosine in a sequence-dependent manner by applying ICON (interstrand complexation with osmium for nucleic acids) probes. By optimizing the concentration and duration of potassium osmate treatment, ICON probes selectively hybridize to methylated cytosine on tissue sections. Since the elongation process by rolling-circle amplification through the padlock probe and synchronous amplification by the hyperbranching reaction at a constant temperature efficiently amplifies the reaction, it is possible to specifically detect the presence of a single methylated cytosine. Since the ICON probe is cross-linked to the nuclear or mitochondrial DNA of the target cell, subsequent elongation and multiplication reactions proceed like a tree growing in soil with its roots firmly planted, thus facilitating the demonstration of methylated cytosine in situ. Using this novel ICON-mediated histochemical method, detection of the methylation of DNA in the regulatory region of the RANK gene in cultured cells and of mitochondrial DNA in paraffin sections of mouse cerebellar tissue was achievable. This combined ICON and rolling-circle amplification method is the first that shows evidence of the presence of a single methylated cytosine in a sequence-specific manner in paraffin sections, and is foreseen as applicable to a wide range of epigenetic studies.
Methods in Ecology and Evolution
Graßle, T;Crockford, C;Eichner, C;
| DOI: 10.1111/2041-210x.14039/v1/review3
The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat.The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites.Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates.Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments
Journal of histotechnology
Potoczak, PS;Strassmann, BI;Vincenz, C;
PMID: 35766215 | DOI: 10.1080/01478885.2022.2088191
Collection, preservation, and shipment of histological specimens in low-resource settings is challenging. We present a novel method that achieved excellent preservation of placental specimens from rural Mali by using formalin fixation, ethanol dehydration, and long-term storage in a solar-powered freezer. Sample preservation success was 92%, permitting evaluation of current and past malaria infection, anemia, placental maturity, and inflammation. Using RNAscope hybridization we were able to visualize cell-specific gene expression patterns in the formalin-fixed paraffin-embedded (FFPE) specimens. Additionally, our method entailed mirrored sampling from the two cut faces of a cotyledon, one for the FFPE workflows and the other for storage in RNAlater and RNA-seq.