Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (39)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (9) Apply TBD filter
  • ALDH1A2 (2) Apply ALDH1A2 filter
  • CAMK2D (2) Apply CAMK2D filter
  • SCN5A (2) Apply SCN5A filter
  • Cacna1c (2) Apply Cacna1c filter
  • RYR2 (2) Apply RYR2 filter
  • Tnnt2 (2) Apply Tnnt2 filter
  • Nos1 (2) Apply Nos1 filter
  • Lum (2) Apply Lum filter
  • MALAT1 (1) Apply MALAT1 filter
  • CD68 (1) Apply CD68 filter
  • DCN (1) Apply DCN filter
  • Trem2 (1) Apply Trem2 filter
  • Lpar2 (1) Apply Lpar2 filter
  • AGRP (1) Apply AGRP filter
  • Pcna (1) Apply Pcna filter
  • PECAM1 (1) Apply PECAM1 filter
  • MMP2 (1) Apply MMP2 filter
  • Reln (1) Apply Reln filter
  • NTM (1) Apply NTM filter
  • PDGFRB (1) Apply PDGFRB filter
  • cxcl12a (1) Apply cxcl12a filter
  • Col2a1 (1) Apply Col2a1 filter
  • MYO1B (1) Apply MYO1B filter
  • BTG2 (1) Apply BTG2 filter
  • POSTN (1) Apply POSTN filter
  • col1a1a (1) Apply col1a1a filter
  • ZIC2 (1) Apply ZIC2 filter
  • PCDH17 (1) Apply PCDH17 filter
  • NPPB (1) Apply NPPB filter
  • Dpp4 (1) Apply Dpp4 filter
  • tbx1 (1) Apply tbx1 filter
  • mCherry (1) Apply mCherry filter
  • NPPC (1) Apply NPPC filter
  • Ibsp (1) Apply Ibsp filter
  • Nppa (1) Apply Nppa filter
  • Aplnr (1) Apply Aplnr filter
  • Mesp1 (1) Apply Mesp1 filter
  • Hcn4 (1) Apply Hcn4 filter
  • Igfbp4 (1) Apply Igfbp4 filter
  • CRYAB (1) Apply CRYAB filter
  • THBS1 (1) Apply THBS1 filter
  • slit2 (1) Apply slit2 filter
  • tdTomato (1) Apply tdTomato filter
  • Cyp26b1 (1) Apply Cyp26b1 filter
  • Slitrk5 (1) Apply Slitrk5 filter
  • Prdm6 (1) Apply Prdm6 filter
  • RARRES2 (1) Apply RARRES2 filter
  • CCL21 (1) Apply CCL21 filter
  • Adamtsl3 (1) Apply Adamtsl3 filter

Product

  • RNAscope (14) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent Assay (11) Apply RNAscope Multiplex Fluorescent Assay filter
  • TBD (6) Apply TBD filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter

Research area

  • (-) Remove Other: Heart filter Other: Heart (39)
  • Development (3) Apply Development filter
  • Hypertension (3) Apply Hypertension filter
  • Atrial fibrillation (2) Apply Atrial fibrillation filter
  • Aging (1) Apply Aging filter
  • calcium signaling (1) Apply calcium signaling filter
  • Cardiomyocytes (1) Apply Cardiomyocytes filter
  • Cellular Cardiology (1) Apply Cellular Cardiology filter
  • CGT (1) Apply CGT filter
  • Collagen (1) Apply Collagen filter
  • Coronary Artery Disease (1) Apply Coronary Artery Disease filter
  • Fibrosis (1) Apply Fibrosis filter
  • Hyperglycemia (1) Apply Hyperglycemia filter
  • hypertrophic cardiomyopathy (1) Apply hypertrophic cardiomyopathy filter
  • Marfan Syndrome (1) Apply Marfan Syndrome filter
  • Metabolism (1) Apply Metabolism filter
  • miRNAs (1) Apply miRNAs filter
  • Molecular Biology (1) Apply Molecular Biology filter
  • Myocardial infarction (1) Apply Myocardial infarction filter
  • Neuroscience (1) Apply Neuroscience filter
  • Regeneration (1) Apply Regeneration filter
  • Sequencing (1) Apply Sequencing filter
  • Stem Cells (1) Apply Stem Cells filter
  • Vascular Biology (1) Apply Vascular Biology filter
  • Vascular Disease (1) Apply Vascular Disease filter

Category

  • Publications (39) Apply Publications filter
BS18 Enhanced matrix stiffness prevents vsmc contractility: how calcium signalling and microtubule stability regulate vascular compliance during ageing

Basic science

2022 Jun 01

Johnson, R;Ahmed, S;Solanki, R;Wostear, F;Afewerki, T;Warren, D;
| DOI: 10.1136/heartjnl-2022-bcs.198

Rationale DNA damage accumulation is a hallmark of vascular smooth muscle cell (VSMC) ageing. Importantly, VSMC DNA damage accumulation and ageing has been implicated in the progression of cardiovascular disease (CVD), including atherosclerosis and vascular calcification. Chemotherapy drugs used in the treatment of many cancers are known to induce DNA damage in cardiovascular cells and accelerate CVD. Histone deacetylase (HDAC) inhibitors are drugs being investigated for novel treatments of many cancers. HDACs perform many vital functions in cells; HDAC6 is known to deacetylate alpha-tubulin to regulate microtubule stability and flexibility. We have recently shown that microtubule stability regulates both VSMC morphology and contractility. Therefore, in this study we investigate the impact of HDAC6 inhibition upon VSMC function. Methodology We use polyacrylamide hydrogels (PAHs)
Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity

Communications biology

2022 Jul 04

Eder, RA;van den Boomen, M;Yurista, SR;Rodriguez-Aviles, YG;Islam, MR;Chen, YI;Trager, L;Coll-Font, J;Cheng, L;Li, H;Rosenzweig, A;Wrann, CD;Nguyen, CT;
PMID: 35787681 | DOI: 10.1038/s42003-022-03635-y

Both exercise-induced molecular mechanisms and physiological cardiac remodeling have been previously studied on a whole heart level. However, the regional microstructural tissue effects of these molecular mechanisms in the heart have yet to be spatially linked and further elucidated. We show in exercised mice that the expression of CITED4, a transcriptional co-regulator necessary for cardioprotection, is regionally heterogenous in the heart with preferential significant increases in the lateral wall compared with sedentary mice. Concordantly in this same region, the heart's local microstructural tissue helicity is also selectively increased in exercised mice. Quantification of CITED4 expression and microstructural tissue helicity reveals a significant correlation across both sedentary and exercise mouse cohorts. Furthermore, genetic deletion of CITED4 in the heart prohibits regional exercise-induced microstructural helicity remodeling. Taken together, CITED4 expression is necessary for exercise-induced regional remodeling of the heart's microstructural helicity revealing how a key molecular regulator of cardiac remodeling manifests into downstream local tissue-level changes.
Recent Advances in Understanding the Molecular Pathophysiology of Angiotensin II Receptors; Lessons from Cell-Selective Receptor Deletion in Mice

The Canadian journal of cardiology

2023 Jun 30

Eguchi, S;Sparks, MA;Sawada, H;Lu, HS;Daugherty, A;Zhuo, JL;
PMID: 37394059 | DOI: 10.1016/j.cjca.2023.06.421

The renin-angiotensin system (RAS) is an essential hormonal system involved in water and sodium reabsorption, renal blood flow regulation, and arterial constriction. Systemic stimulation of the RAS with infusion of the main peptide angiotensin II (Ang II) in animals as well as pathological elevation of renin (i.e renovascular hypertension) to increase circulatory Ang II in humans ultimately lead to hypertension and end-organ damage. In addition to hypertension, accumulating evidence support that the Ang II type 1 receptor exerts a critical role in cardiovascular and kidney diseases independent of blood pressure elevation. In the last two decades, the identification of an increased number of peptides and receptors has facilitated the concept that the RAS has both detrimental and beneficial effects on the cardiovascular system depending on which RAS components are activated. For example, angiotensin 1-7 and Ang II type 2 receptors act as a counter-regulatory system against the classical RAS by mediating vasodilation. While the RAS as an endocrine system for regulation of blood pressure is well established, there remain many unanswered questions and controversial findings regarding blood pressure regulation and pathophysiological regulation of cardiovascular diseases at the tissue level. This review article will include the latest knowledge gleaned from cell type-selective gene deleted mice regarding cell type-specific roles of AngII receptors and discuss their significance in health and diseases. In particular, we focus on the roles of these receptors expressed in vascular, cardiac, and kidney epithelial cells.
PPARγ and NOTCH Regulate Regional Identity in the Murine Cardiac Outflow Tract

Circulation research

2022 Oct 28

Rammah, M;Théveniau-Ruissy, M;Sturny, R;Rochais, F;Kelly, RG;
PMID: 36205127 | DOI: 10.1161/CIRCRESAHA.122.320766

The arterial pole of the heart is a hotspot for life-threatening forms of congenital heart defects (CHDs). Development of this cardiac region occurs by addition of Second Heart Field (SHF) progenitor cells to the embryonic outflow tract (OFT) and subsequently the base of the ascending aorta and pulmonary trunk. Understanding the cellular and genetic mechanisms driving arterial pole morphogenesis is essential to provide further insights into the cause of CHDs.A synergistic combination of bioinformatic analysis and mouse genetics as well as embryo and explant culture experiments were used to dissect the cross-regulatory transcriptional circuitry operating in future subaortic and subpulmonary OFT myocardium.Here, we show that the lipid sensor PPARγ (peroxisome proliferator-activated receptor gamma) is expressed in future subpulmonary myocardium in the inferior wall of the OFT and that PPARγ signaling-related genes display regionalized OFT expression regulated by the transcription factor TBX1 (T-box transcription factor 1). Modulating PPARγ activity in ex vivo cultured embryos treated with a PPARγ agonist or antagonist or deleting Pparγ in cardiac progenitor cells using Mesp1-Cre reveals that Pparγ is required for addition of future subpulmonary myocardium and normal arterial pole development. Additionally, the non-canonical DLK1 (delta-like noncanonical Notch ligand 1)/NOTCH (Notch receptor 1)/HES1 (Hes family bHLH transcription factor 1) pathway negatively regulates Pparγ in future subaortic myocardium in the superior OFT wall.Together these results identify Pparγ as a regulator of regional transcriptional identity in the developing heart, providing new insights into gene interactions involved in congenital heart defects.
Caveolae-restricted mechano-chemical signal transduction in mouse atrial myocytes

Biophysical Journal

2023 Feb 01

Medvedev, R;Turner, D;Gorelik, J;Alvarado, F;Bondarenko, V;Glukhov, A;
| DOI: 10.1016/j.bpj.2022.11.1392

Atrial fibrillation (AF) is commonly observed in patients with hypertension and is associated with pathologically elevated cardiomyocyte stretch. AF triggers have been linked to subcellular Ca2+ abnormalities, while their association with stretch remains elusive. Caveolae are mechanosensitive membrane structures, that play a role in both Ca2+ and cyclic adenosine monophosphate (cAMP) signaling. Therefore, caveolae could provide a mechanistic connection between cardiomyocyte stretch, Ca2+ mishandling, and AF. In isolated mouse atrial myocytes, cell stretch was mimicked by hypotonic swelling, which increased cell width (by ∼30%, p
Therapeutic Hypothermia Inhibits Hypoxia-Induced Cardiomyocyte Apoptosis Via the MiR-483-3p/Cdk9 Axis

Journal of the American Heart Association

2023 Feb 21

Xue, Q;Zhang, Q;Guo, Z;Wu, L;Chen, Y;Chen, Z;Yang, K;Cao, J;
PMID: 36789845 | DOI: 10.1161/JAHA.122.026160

Background Therapeutic hypothermia has a beneficial effect on cardiac function after acute myocardial infarction, but the exact mechanism is still unclear. Recent research has suggested that microRNAs participate in acute myocardial infarction to regulate cardiomyocyte survival. This study aimed to explore the ability of hypothermia-regulated microRNA-483-3p (miR-483-3p) to inhibit hypoxia-induced myocardial infarction. Methods and Results Primary cardiomyocytes were cultured under hypoxia at 32 °C to mimic therapeutic hypothermia, and the differentially expressed microRNAs were determined by RNA sequencing. Therapeutic hypothermia recovered hypoxia-induced increases in apoptosis, decreases in ATP levels, and decreases in miR-483-3p expression. Overexpression of miR-483-3p exhibited effects similar to those of therapeutic hypothermia on hypoxia in the treatment of cardiomyocytes to associate with maintaining the mitochondrial membrane potential, and cyclin-dependent kinase 9 (Cdk9) was identified as a target gene with downregulated expression by miR-483-3p. Knockdown of Cdk9 also promoted cardiac survival, ATP production, and mitochondrial membrane potential stability under hypoxia. In vivo, the expression of miR-483-3p and Cdk9 was tested in the cardiac tissue of the mice with acute myocardial infarction, and the expression of miR-483-3p decreased and Cdk9 increased in the region of myocardial infarction. However, miR-483-3p was overexpressed with lentivirus, which suppressed apoptosis, infarct size (miR-483-3p, 22.00±4.04% versus negative control, 28.57±5.44%, P<0.05), and Cdk9 expression to improve cardiac contractility. Conclusions MiR-483-3p antagonizes hypoxia, leading to cardiomyocyte injury by targeting Cdk9, which is a new mechanism of therapeutic hypothermia.
In vivo visualization and molecular targeting of the cardiac conduction system

The Journal of clinical investigation

2022 Aug 11

Goodyer, WR;Beyersdorf, BM;Duan, L;van den Berg, NS;Mantri, S;Galdos, FX;Puluca, N;Buikema, JW;Lee, S;Salmi, D;Robinson, ER;Rogalla, S;Cogan, DP;Khosla, C;Rosenthal, EL;Wu, SM;
PMID: 35951416 | DOI: 10.1172/JCI156955

Accidental injury to the cardiac conduction system (CCS), a network of specialized cells embedded within the heart and indistinguishable from the surrounding heart muscle tissue, is a major complication in cardiac surgeries. Here, we addressed this unmet need by engineering targeted antibody-dye conjugates directed against CCS, allowing for the visualization of the CCS in vivo following a single intravenous injection in mice. These optical imaging tools showed high sensitivity, specificity, and resolution, with no adverse effects to CCS function. Further, with the goal of creating a viable prototype for human use, we generated a fully human monoclonal Fab, that similarly targets the CCS with high specificity. We demonstrate that, when conjugated to an alternative cargo, this Fab can also be used to modulate CCS biology in vivo providing a proof-of-principle for targeted cardiac therapeutics. Finally, in performing differential gene expression analyses of the entire murine CCS at single-cell resolution, we uncovered and validated a suite of additional cell surface markers that can be used to molecularly target the distinct subcomponents of the CCS, each prone to distinct life-threatening arrhythmias. These findings lay the foundation for translational approaches targeting the CCS for visualization and therapy in cardiothoracic surgery, cardiac imaging and arrhythmia management.
Cellular mechanisms of oligoclonal vascular smooth muscle cell expansion in cardiovascular disease

Cardiovascular research

2022 Aug 22

Worssam, MD;Lambert, J;Oc, S;Taylor, JC;Taylor, AL;Dobnikar, L;Chappell, J;Harman, JL;Figg, NL;Finigan, A;Foote, K;Uryga, AK;Bennett, MR;Spivakov, M;Jørgensen, HF;
PMID: 35994249 | DOI: 10.1093/cvr/cvac138

Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality.We investigate the dynamics of VSMC clone formation using confocal microscopy and single cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared to SCA1- cells.Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.
Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction

Nature Cardiovascular Research

2022 Nov 17

Yamada, S;Ko, T;Hatsuse, S;Nomura, S;Zhang, B;Dai, Z;Inoue, S;Kubota, M;Sawami, K;Yamada, T;Sassa, T;Katagiri, M;Fujita, K;Katoh, M;Ito, M;Harada, M;Toko, H;Takeda, N;Morita, H;Aburatani, H;Komuro, I;
| DOI: 10.1038/s44161-022-00140-7

The underlying mechanisms of ventricular remodeling after myocardial infarction (MI) remain largely unknown. In this study, we performed an integrative analysis of spatial transcriptomics and single-nucleus RNA sequencing (snRNA-seq) in a murine MI model and found that mechanical stress-response genes are expressed at the border zone and play a critical role in left ventricular remodeling after MI. An integrative analysis of snRNA-seq and spatial transcriptome of the heart tissue after MI identified the unique cluster that appeared at the border zone in an early stage, highly expressing mechano-sensing genes, such as Csrp3. AAV9-mediated gene silencing and overexpression of Csrp3 demonstrated that upregulation of Csrp3 plays critical roles in preventing cardiac remodeling after MI by regulation of genes associated with mechano-sensing. Overall, our study not only provides an insight into spatiotemporal molecular changes after MI but also highlights that the mechano-sensing genes at the border zone act as adaptive regulators of left ventricular remodeling.
Pressure overload induces ISG15 to facilitate adverse ventricular remodeling and promote heart failure

The Journal of clinical investigation

2023 May 01

Yerra, VG;Batchu, SN;Kaur, H;Kabir, MDG;Liu, Y;Advani, SL;Tran, DT;Sadeghian, S;Sedrak, P;Billia, F;Kuzmanov, U;Gramolini, AO;Qasrawi, DO;Petrotchenko, EV;Borchers, CH;Connelly, KA;Advani, A;
PMID: 37115698 | DOI: 10.1172/JCI161453

Inflammation promotes adverse ventricular remodeling, a common antecedent of heart failure. Here, we set out to determine how inflammatory cells affect cardiomyocytes in the remodeling heart. Pathogenic cardiac macrophages induced an IFN response in cardiomyocytes, characterized by upregulation of the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), which posttranslationally modifies its targets through a process termed ISGylation. Cardiac ISG15 is controlled by type I IFN signaling, and ISG15 or ISGylation is upregulated in mice with transverse aortic constriction or infused with angiotensin II; rats with uninephrectomy and DOCA-salt, or pulmonary artery banding; cardiomyocytes exposed to IFNs or CD4+ T cell-conditioned medium; and ventricular tissue of humans with nonischemic cardiomyopathy. By nanoscale liquid chromatography-tandem mass spectrometry, we identified the myofibrillar protein filamin-C as an ISGylation target. ISG15 deficiency preserved cardiac function in mice with transverse aortic constriction and led to improved recovery of mouse hearts ex vivo. Metabolomics revealed that ISG15 regulates cardiac amino acid metabolism, whereas ISG15 deficiency prevented misfolded filamin-C accumulation and induced cardiomyocyte autophagy. In sum, ISG15 upregulation is a feature of pathological ventricular remodeling, and protein ISGylation is an inflammation-induced posttranslational modification that may contribute to heart failure development by altering cardiomyocyte protein turnover.
ADAMTSL3 knock-out mice develop cardiac dysfunction and dilatation with increased TGFβ signalling after pressure overload

Communications biology

2022 Dec 20

Rypdal, KB;Olav Melleby, A;Robinson, EL;Li, J;Palmero, S;Seifert, DE;Martin, D;Clark, C;López, B;Andreassen, K;Dahl, CP;Sjaastad, I;Tønnessen, T;Stokke, MK;Louch, WE;González, A;Heymans, S;Christensen, G;Apte, SS;Lunde, IG;
PMID: 36539599 | DOI: 10.1038/s42003-022-04361-1

Heart failure is a major cause of morbidity and mortality worldwide, and can result from pressure overload, where cardiac remodelling is characterized by cardiomyocyte hypertrophy and death, fibrosis, and inflammation. In failing hearts, transforming growth factor (TGF)β drives cardiac fibroblast (CFB) to myofibroblast differentiation causing excessive extracellular matrix production and cardiac remodelling. New strategies to target pathological TGFβ signalling in heart failure are needed. Here we show that the secreted glycoprotein ADAMTSL3 regulates TGFβ in the heart. We found that Adamtsl3 knock-out mice develop exacerbated cardiac dysfunction and dilatation with increased mortality, and hearts show increased TGFβ activity and CFB activation after pressure overload by aortic banding. Further, ADAMTSL3 overexpression in cultured CFBs inhibits TGFβ signalling, myofibroblast differentiation and collagen synthesis, suggesting a cardioprotective role for ADAMTSL3 by regulating TGFβ activity and CFB phenotype. These results warrant future investigation of the potential beneficial effects of ADAMTSL3 in heart failure.
Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension

Immunity

2022 Jul 12

Bi, Q;Wang, C;Cheng, G;Chen, N;Wei, B;Liu, X;Li, L;Lu, C;He, J;Weng, Y;Yin, C;Lin, Y;Wan, S;Zhao, L;Xu, J;Wang, Y;Gu, Y;Shen, XZ;Shi, P;
PMID: 35863346 | DOI: 10.1016/j.immuni.2022.06.018

Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?