Nature Cardiovascular Research
Tan, W;Seow, W;Zhang, A;Rhee, S;Wong, W;Greenleaf, W;Wu, J;
| DOI: 10.1038/s44161-022-00205-7
Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research.
Aslan, GS;Jaé, N;Manavski, Y;Fouani, Y;Shumliakivska, M;Kettenhausen, L;Kirchhof, L;Günther, S;Fischer, A;Luxán, G;Dimmeler, S;
PMID: 36883566 | DOI: 10.1172/jci.insight.162124
The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.
Bogdanov, V;Soltisz, A;Beard, C;Hernandez Orengo, B;Sakuta, G;Veeraraghavan, R;Davis, J;Gyorke, S;
| DOI: 10.1016/j.bpj.2022.11.1389
Aberrant Ca-CaM signaling has been implicated in various congenital and acquired cardiac pathologies, including arrhythmia, hypertrophy, and HF. We examined the impact of HF induced by trans-aortic constriction (TAC) on the distribution of the three CaM mRNAs (Calm 1,2 and 3) and their key protein target mRNAs (Ryr2, Scn5a, Camk2d, NOS1 and Cacna1c) in cardiomyocytes, using fluorescence in situ hybridization (RNAScope™). HF resulted in specific changes in the pattern of localization of Calms, manifested in redistribution of Calm3 from the cell periphery towards the perinuclear area and enhanced Calm2 attraction to the perinuclear area compared to sham myocytes. Additionally, HF resulted in redistribution of mRNAs for certain CaM target mRNAs. Particularly, NOS1 localization shifted from the cell periphery towards the perinuclear area, Cacna1c, Camk2d and Scn5a abundance increased at the perinuclear area, and Ryr2 attracted even closer to the cell periphery in HF myocytes compared to sham myocytes. The strength of non-random attraction/repulsion was measured as the maximal deviation between the observed distribution of nearest neighbor distances from the distribution predicted under complete spatial randomness. Consistent with the observed alterations in abundance and distribution of CaM and CaM target mRNAs, HF resulted in increased attraction between Calm1 and Scn5a, Ryr2 and Camk2d, between Calm2 and Ryr2 and Camk2d; and between Calm3 and NOS1 and Scn5a. In contrast, the attraction between Calm3 and Ryr2 decreased in HF myocytes compared to sham. Collectively, these results suggest distribution of Calms and their association with key target protein mRNAs undergo substantial alterations in heart failure. These results have new important implications for organization of Ca signaling in normal and diseased heart.
Vörös, I;Onódi, Z;Tóth, VÉ;Gergely, TG;Sághy, É;Görbe, A;Kemény, Á;Leszek, P;Helyes, Z;Ferdinandy, P;Varga, ZV;
PMID: 35884882 | DOI: 10.3390/biomedicines10071573
Dipeptidyl-peptidase-4 (DPP4) inhibitors are novel medicines for diabetes. The SAVOR-TIMI-53 clinical trial revealed increased heart-failure-associated hospitalization in saxagliptin-treated patients. Although this side effect could limit therapeutic use, the mechanism of this potential cardiotoxicity is unclear. We aimed to establish a cellular platform to investigate DPP4 inhibition and the role of its neuropeptide substrates substance P (SP) and neuropeptide Y (NPY), and to determine the expression of DDP4 and its neuropeptide substrates in the human heart. Western blot, radio-, enzyme-linked immuno-, and RNA scope assays were performed to investigate the expression of DPP4 and its substrates in human hearts. Calcein-based viability measurements and scratch assays were used to test the potential toxicity of DPP4 inhibitors. Cardiac expression of DPP4 and NPY decreased in heart failure patients. In human hearts, DPP4 mRNA is detectable mainly in cardiomyocytes and endothelium. Treatment with DPP4 inhibitors alone/in combination with neuropeptides did not affect viability but in scratch assays neuropeptides decreased, while saxagliptin co-administration increased fibroblast migration in isolated neonatal rat cardiomyocyte-fibroblast co-culture. Decreased DPP4 activity takes part in the pathophysiology of end-stage heart failure. DPP4 compensates against the elevated sympathetic activity and altered neuropeptide tone. Its inhibition decreases this adaptive mechanism, thereby exacerbating myocardial damage.
Journal of molecular and cellular cardiology
Velayutham, N;Calderon, MU;Alfieri, CM;Padula, SL;van Leeuwen, FN;Scheijen, B;Yutzey, KE;
PMID: 37062247 | DOI: 10.1016/j.yjmcc.2023.03.016
Rodent cardiomyocytes undergo mitotic arrest in the first postnatal week. Here, we investigate the role of transcriptional co-regulator Btg2 (B-cell translocation gene 2) and functionally-similar homolog Btg1 in postnatal cardiomyocyte cell cycling and maturation. Btg1 and Btg2 (Btg1/2) are expressed in neonatal C57BL/6 mouse left ventricles coincident with cardiomyocyte cell cycle arrest. Btg1/2 constitutive double knockout (DKO) mouse hearts exhibit increased pHH3+ mitotic cardiomyocytes compared to Wildtype at postnatal day (P)7, but not at P30. Similarly, neonatal AAV9-mediated Btg1/2 double knockdown (DKD) mouse hearts exhibit increased EdU+ mitotic cardiomyocytes compared to Scramble AAV9-shRNA controls at P7, but not at P14. In neonatal rat ventricular myocyte (NRVM) cultures, siRNA-mediated Btg1/2 single and double knockdown cohorts showed increased EdU+ cardiomyocytes compared to Scramble siRNA controls, without increase in binucleation or nuclear DNA content. RNAseq analyses of Btg1/2-depleted NRVMs support a role for Btg1/2 in inhibiting cell proliferation, and in modulating reactive oxygen species response pathways, implicated in neonatal cardiomyocyte cell cycle arrest. Together, these data identify Btg1 and Btg2 as novel contributing factors in mammalian cardiomyocyte cell cycle arrest after birth.
International journal of molecular sciences
Pankratz, F;Maksudova, A;Goesele, R;Meier, L;Proelss, K;Marenne, K;Thut, AK;Sengle, G;Correns, A;Begelspacher, J;Alkis, D;Siegel, PM;Smolka, C;Grundmann, S;Moser, M;Zhou, Q;Esser, JS;
PMID: 36902380 | DOI: 10.3390/ijms24054950
Dedifferentiated vascular smooth muscle cells (vSMCs) play an essential role in neointima formation, and we now aim to investigate the role of the bone morphogenetic protein (BMP) modulator BMPER (BMP endothelial cell precursor-derived regulator) in neointima formation. To assess BMPER expression in arterial restenosis, we used a mouse carotid ligation model with perivascular cuff placement. Overall BMPER expression after vessel injury was increased; however, expression in the tunica media was decreased compared to untreated control. Consistently, BMPER expression was decreased in proliferative, dedifferentiated vSMC in vitro. C57BL/6_Bmper+/- mice displayed increased neointima formation 21 days after carotid ligation and enhanced expression of Col3A1, MMP2, and MMP9. Silencing of BMPER increased the proliferation and migration capacity of primary vSMCs, as well as reduced contractibility and expression of contractile markers, whereas stimulation with recombinant BMPER protein had the opposite effect. Mechanistically, we showed that BMPER binds insulin-like growth factor-binding protein 4 (IGFBP4), resulting in the modulation of IGF signaling. Furthermore, perivascular application of recombinant BMPER protein prevented neointima formation and ECM deposition in C57BL/6N mice after carotid ligation. Our data demonstrate that BMPER stimulation causes a contractile vSMC phenotype and suggest that BMPER has the potential for a future therapeutic agent in occlusive cardiovascular diseases.
Journal of Molecular and Cellular Cardiology
Almallki, A;Arjun, S;Bell, R;Yellon, D;
| DOI: 10.1016/j.yjmcc.2022.08.018
Background Hyperglycaemia is a common finding in diabetic and non-diabetic patients presenting with ACS and is a powerful predictor of prognosis and mortality. The role of hyperglycaemia in ischemia-reperfusion injury (IRI) is not fully understood, and whether the Sodium Glucose Co-Transporter 1 (SGLT1) plays a role in infarct augmentation, before and/or after reperfusion, remains to be elucidated. However, diabetes clinical trials have shown SGLT inhibition improves cardiovascular outcomes, yet the mechanism is not fully understood. Purpose (1) Characterise the expression of SGLT1 in the myocardium, (2) investigate if SGLT1 is involved in a glucotoxicity injury during IRI, and (3) whether inhibiting SGLT1 with an SGLT inhibitor may reduce infarct size. Methods RT-PCR and in-situ hybridization (RNAScope) combined with Immunoflurescence integrated co detection with different cell marker techniques were used to detect SGLT1 mRNA expression in Sprague-Dawley whole myocardium and isolated primary cardiomyocytes. An Ex-vivo Langendorff ischemia-reperfusion perfusion model was used to study the effect of high glucose (22 mmol) on myocardium at reperfusion and Canagliflozin (CANA) a non-selective SGLT inhibitor (1000 nmol/L to block both the SGLT1 receptor and SGLT 2 receptor and 5 nmol/L to block the SGLT2 receptor only) was introduced following ischaemia at two different concentrations, at reperfusion and its effect on infarct size measured using triphenyltetrazolium chloride (TTC) staining. Results RT-PCR found SGLT1 mRNA is expressed in whole myocardium and in individual cardiac chambers. RNAscope detected SGLT1 mRNA is expressed homogenously within intact myocardium, particularly evident within the vasculature. Importantly, hyperglycaemia (22 mmol) at reperfusion increased infarct size (51.80 ± 3.52% vs 40.80 ± 2.89%; p-value: 0.026) compared to normoglycaemia, low dose CANA (5 nmol/L) did not attenuate infarct size in low glucose or high glucose, whereas high CANA concentration (1μmoL/L) significantly reduced infarct size in high glucose (22 mM) when administered at reperfusion (P value = 0.0047). Conclusion We have shown that SGLT1 is present in the myocardium. Hyperglycaemia appears augment myocardial infarction and inhibition of SGLT1 attenuates this increase.
Sun, Y;Asano, K;Sedes, L;Cantalupo, A;Hansen, J;Iyengar, R;Walsh, MJ;Ramirez, F;
PMID: 37022786 | DOI: 10.1172/jci.insight.168793
To improve our limited understanding of the pathogenesis of thoracic aortic aneurysm (TAA) leading to acute aortic dissection, single-cell RNA sequencing (scRNA-seq) was employed to profile disease-relevant transcriptomic changes of aortic cell populations in a well-characterized mouse model of the most commonly diagnosed form of Marfan syndrome (MFS). As result, two discrete sub-populations of aortic cells (SMC3 and EC4) were identified only in the aorta of Fbn1mgR/mgR mice. SMC3 highly express genes related to extracellular matrix formation and nitric oxide signaling, whereas EC4 transcriptional profile is enriched in SMC, fibroblast, and immune cell-related genes. Trajectory analysis predicted close phenotypic modulation between SMC3 and EC4, which were therefore analyzed together as a discrete MFS-modulated (MFSmod) sub-population. In situ hybridizations of diagnostic transcripts located MFSmod cells to the intima of Fbn1mgR/mgR aortas. Reference-based dataset integration revealed transcriptomic similarity between MFSmod and an SMC-derived cell cluster modulated in human TAA. Consistent with angiotensin II type I receptor (At1r) contribution to TAA development, MFSmod cells were absent in the aorta of Fbn1mgR/mgR mice treated with the At1r antagonist losartan. Altogether, our findings indicate that a discrete dynamic alteration of aortic cell identity is associated with dissecting TAA in MFS mice and increased risk of aortic dissection in MFS patients.
Zou, M;Mangum, KD;Magin, JC;Cao, HH;Yarboro, MT;Shelton, EL;Taylor, JM;Reese, J;Furey, TS;Mack, CP;
PMID: 36749647 | DOI: 10.1172/jci.insight.163454
Based upon our demonstration that the smooth muscle (SMC)-selective putative methyltransferase, Prdm6, interacted with myocardin-related transcription factor A, we examined Prdm6's role in SMCs in vivo using cell-type specific knockout mouse models. Although SMC-specific depletion of Prdm6 in adult mice was well-tolerated, Prdm6 depletion in Wnt1 expressing cells during development resulted in perinatal lethality and a completely penetrant patent ductus arteriosus (DA) phenotype. Lineage tracing experiments in Wnt1Cre2Prdm6flox/floxROSA26LacZ mice revealed normal neural crest-derived SMC investment of the outflow tract. In contrast, myography measurements on DA segments isolated from E18.5 embryos indicated that Prdm6 depletion significantly reduced DA tone and contractility. RNA-seq analyses on DA and ascending aorta samples at E18.5 identified a DA-enriched gene program that included many SMC-selective contractile-associated proteins that was down-regulated by Prdm6 depletion. Chromatin immunoprecipitation (ChIP)-seq experiments in outflow tract SMCs demonstrated that 50% of the genes altered by Prdm6 depletion contained Prdm6 binding sites. Finally, using several genome-wide data sets, we identified a SMC-selective enhancer within the Prdm6 third intron that exhibited allele-specific activity providing evidence that rs17149944 may be the causal SNP for a cardiovascular disease GWAS locus identified within the human PRDM6 gene.
Smart, CD;Fehrenbach, DJ;Wassenaar, JW;Agrawal, V;Fortune, NL;Dixon, DD;Cottam, MA;Hasty, AH;Hemnes, AR;Doran, AC;Gupta, DK;Madhur, MS;
PMID: 37314125 | DOI: 10.1093/cvr/cvad093
Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodeling. Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single cell sequencing approach, CITE-seq, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages. The DOCA-salt model results in differential expression of several known and novel genes in cardiac macrophages, including upregulation of Trem2, which has been recently implicated in obesity and atherosclerosis. The role of Trem2 in hypertensive heart failure, however, is unknown. We found that mice with genetic deletion of Trem2 exhibit increased cardiac hypertrophy, diastolic dysfunction, renal injury, and decreased cardiac capillary density after DOCA-salt treatment compared to wild-type controls. Moreover, Trem2-deficient macrophages have impaired expression of pro-angiogenic gene programs and increased expression of pro-inflammatory cytokines. Furthermore, we found that plasma levels of soluble TREM2 are elevated in DOCA-salt treated mice and humans with heart failure. Together, our data provide an atlas of immunological alterations that can lead to improved diagnostic and therapeutic strategies for HFpEF. We provide our dataset in an easy to explore and freely accessible web application making it a useful resource for the community. Finally, our results suggest a novel cardioprotective role for Trem2 in hypertensive heart failure.
American journal of physiology. Heart and circulatory physiology
Wabel, E;Orr, A;Flood, ED;Thompson, JM;Xie, H;Demireva, EY;Abolibdeh, B;Honke Hulbert, D;Mullick, AE;Garver, H;Fink, GD;Kung, TA;Watts, SW;
PMID: 37294893 | DOI: 10.1152/ajpheart.00239.2023
The adipokine chemerin may support blood pressure, evidenced by a fall in mean arterial pressure after whole body antisense oligonucleotide (ASO)-mediated knockdown of chemerin protein in rat models of normal and elevated blood pressure. Although the liver is the greatest contributor of circulating chemerin, liver-specific ASOs that abolished hepatic-derived chemerin did not change blood pressure. Thus, other sites must produce the chemerin that supports blood pressure. We hypothesize that the vasculature is a source of chemerin independent of the liver that supports arterial tone. RNAScope, PCR, Western blot analyses, ASOs, isometric contractility, and radiotelemetry were used in the Dahl salt-sensitive (SS) rat (male and female) on a normal diet. Retinoic acid receptor responder 2 (Rarres2) mRNA was detected in the smooth muscle, adventitia, and perivascular adipose tissue of the thoracic aorta. Chemerin protein was detected immunohistochemically in the endothelium, smooth muscle cells, adventitia, and perivascular adipose tissue. Chemerin colocalized with the vascular smooth muscle marker α-actin and the adipocyte marker perilipin. Importantly, chemerin protein in the thoracic aorta was not reduced when liver-derived chemerin was abolished by a liver-specific ASO against chemerin. Chemerin protein was similarly absent in arteries from a newly created global chemerin knockout in Dahl SS rats. Inhibition of the receptor Chemerin1 by the receptor antagonist CCX832 resulted in the loss of vascular tone that supports potential contributions of chemerin by both perivascular adipose tissue and the media. These data suggest that vessel-derived chemerin may support vascular tone locally through constitutive activation of Chemerin1. This posits chemerin as a potential therapeutic target in blood pressure regulation.NEW & NOTEWORTHY Vascular tunicas synthesizing chemerin is a new finding. Vascular chemerin is independent of hepatic-derived chemerin. Vasculature from both males and females have resident chemerin. Chemerin1 receptor activity supports vascular tone.
Pei, J;Cai, L;Wang, F;Xu, C;Pei, S;Guo, H;Sun, X;Chun, J;Cong, X;Zhu, W;Zheng, Z;Chen, X;
PMID: 35920162 | DOI: 10.1161/CIRCRESAHA.122.321036
Myocardial infarction (MI) is one of the most dangerous adverse cardiovascular events. Our previous study found that lysophosphatidic acid (LPA) is increased in human peripheral blood after MI, and LPA has a protective effect on the survival and proliferation of various cell types. However, the role of LPA and its receptors in MI is less understood.To study the unknown role of LPA and its receptors in heart during MI.In this study, we found that mice also had elevated LPA level in peripheral blood, as well as increased cardiac expression of its receptor LPA2 in the early stages after MI. With adult and neonate MI models in global Lpar2 knockout (Lpar2-KO) mice, we found Lpar2 deficiency increased vascular leak leading to disruption of its homeostasis, so as to impaired heart function and increased early mortality. Histological examination revealed larger scar size, increased fibrosis, and reduced vascular density in the heart of Lpar2-KO mice. Furthermore, Lpar2-KO also attenuated blood flow recovery after femoral artery ligation with decreased vascular density in gastrocnemius. Our study revealed that Lpar2 was mainly expressed and altered in cardiac endothelial cells during MI, and use of endothelial-specific Lpar2 knockout mice phenocopied the global knockout mice. Additionally, adenovirus-Lpar2 and pharmacologically activated LPA2 significantly improved heart function, reduced scar size, increased vascular formation, and alleviated early mortality by maintaining vascular homeostasis owing to protecting vessels from leakage. Mechanistic studies demonstrated that LPA-LPA2 signaling could promote endothelial cell proliferation through PI3K-Akt/PLC-Raf1-Erk pathway and enhanced endothelial cell tube formation via PKD1-CD36 signaling.Our results indicate that endothelial LPA-LPA2 signaling promotes angiogenesis and maintains vascular homeostasis, which is vital for restoring blood flow and repairing tissue function in ischemic injuries. Targeting LPA-LPA2 signal might have clinical therapeutic potential to protect the heart from ischemic injury.