Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (244) Apply RNAscope 2.0 Assay filter
  • RNAscope (177) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (134) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (90) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (88) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (80) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (52) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 VS Assay (37) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (35) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Duplex (33) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (31) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • TBD (24) Apply TBD filter
  • Basescope (19) Apply Basescope filter
  • RNAscope Multiplex Fluorescent v2 (10) Apply RNAscope Multiplex Fluorescent v2 filter
  • miRNAscope (7) Apply miRNAscope filter
  • RNAscope HiPlex v2 assay (5) Apply RNAscope HiPlex v2 assay filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD duplex reagent kit (4) Apply RNAscope 2.5 HD duplex reagent kit filter
  • DNAscope HD Duplex Reagent Kit (3) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope ISH Probe High Risk HPV (3) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Reagent Kit (2) Apply RNAscope 2.5 HD Reagent Kit filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • (-) Remove Cancer filter Cancer (1368)
  • HPV (158) Apply HPV filter
  • Infectious Disease (120) Apply Infectious Disease filter
  • lncRNA (67) Apply lncRNA filter
  • Immunotherapy (52) Apply Immunotherapy filter
  • Neuroscience (42) Apply Neuroscience filter
  • Stem Cells (40) Apply Stem Cells filter
  • Inflammation (31) Apply Inflammation filter
  • LncRNAs (16) Apply LncRNAs filter
  • Tumor microenvironment (6) Apply Tumor microenvironment filter
  • circRNAs (5) Apply circRNAs filter
  • Stem cell (5) Apply Stem cell filter
  • CGT (4) Apply CGT filter
  • Development (4) Apply Development filter
  • miRNAs (4) Apply miRNAs filter
  • therapeutics (4) Apply therapeutics filter
  • intratumoral microbiota (3) Apply intratumoral microbiota filter
  • Other: Methods (3) Apply Other: Methods filter
  • Pain (3) Apply Pain filter
  • Cell Therapy (2) Apply Cell Therapy filter
  • circRNA (2) Apply circRNA filter
  • Developmental (2) Apply Developmental filter
  • Engineered T cells (2) Apply Engineered T cells filter
  • Epstein-Barr (2) Apply Epstein-Barr filter
  • Gene Therapy (2) Apply Gene Therapy filter
  • HIV (2) Apply HIV filter
  • Immuno-Oncology (2) Apply Immuno-Oncology filter
  • Immunotherapy: NK-Cell Therapy (2) Apply Immunotherapy: NK-Cell Therapy filter
  • Liver (2) Apply Liver filter
  • Lung (2) Apply Lung filter
  • noncoding RNA (2) Apply noncoding RNA filter
  • Radiotherapy (2) Apply Radiotherapy filter
  • Antimicrobial Chemotherapy (1) Apply Antimicrobial Chemotherapy filter
  • Bone (1) Apply Bone filter
  • Canine Cancer (1) Apply Canine Cancer filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Diet (1) Apply Diet filter
  • Endocrinology (1) Apply Endocrinology filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Cutavirus (1) Apply Infectious Disease: Cutavirus filter
  • Infectiouse Disease: EBV (1) Apply Infectiouse Disease: EBV filter
  • IO (1) Apply IO filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Reproductive Biology (1) Apply Other: Reproductive Biology filter
  • Single Cell Sequencing (1) Apply Single Cell Sequencing filter
  • Skin (1) Apply Skin filter
  • Tumor Microbiome (1) Apply Tumor Microbiome filter
  • Virotherapy (1) Apply Virotherapy filter

Category

  • Publications (1368) Apply Publications filter
Typing of pancreatic cancer-associated fibroblasts identifies different subpopulations.

World J Gastroenterol.

2018 Nov 09

Nielsen MFB, Mortensen MB, Detlefsen S.
PMID: 30416314 | DOI: 10.3748/wjg.v24.i41.4663

Abstract

AIM:

To determine whether it is possible to identify different immune phenotypic subpopulations of cancer-associated fibroblasts (CAFs) in pancreatic cancer (PC).

METHODS:

We defined four different stromal compartments in surgical specimens with PC: The juxtatumoural, peripheral, lobular and septal stroma. Tissue microarrays were produced containing all pre-defined PC compartments, and the expression of 37 fibroblast (FB) and 8 extracellular matrix (ECM) markers was evaluated by immunohistochemistry, immunofluorescence (IF), double-IF, and/or in situ hybridization. The compartment-specific mean labelling score was determined for each marker using a four-tiered scoring system. DOG1 gene expression was examined by quantitative reverse transcription PCR (qPCR).

RESULTS:

CD10, CD271, cytoglobin, DOG1, miR-21, nestin, and tenascin C exhibited significant differences in expression profiles between the juxtatumoural and peripheral compartments. The expression of CD10, cytoglobin, DOG1, nestin, and miR-21 was moderate/strong in juxtatumoural CAFs (j-CAFs) and barely perceptible/weak in peripheral CAFs (p-CAFs). The upregulation of DOG1 gene expression in PC compared to normal pancreas was verified by qPCR. Tenascin C expression was strong in the juxtatumoural ECM and barely perceptible/weak in the peripheral ECM. CD271 expression was barely perceptible in j-CAFs but moderate in the other compartments. Galectin-1 was stronger expressed in j-CAFs vs septal fibroblasts, PDGF-Rβ, tissue transglutaminase 2, and hyaluronic acid were stronger expressed in lobular fibroblasts vs p-CAFs, and plectin-1 was stronger expressed in j-CAFs vs l-FBs. The expression of the remaining 33 markers did not differ significantly when related to the quantity of CAFs/FBs or the amount of ECM in the respective compartments.

CONCLUSION:

Different immune phenotypic CAF subpopulations can be identified in PC, using markers such as cytoglobin, CD271, and miR-21. Future studies should determine whether CAF subpopulations have different functional properties.

LINC01133 promotes hepatocellular carcinoma progression by sponging miR-199a-5p and activating annexin A2

Clinical and translational medicine

2021 May 01

Yin, D;Hu, ZQ;Luo, CB;Wang, XY;Xin, HY;Sun, RQ;Wang, PC;Li, J;Fan, J;Zhou, ZJ;Zhou, J;Zhou, SL;
PMID: 34047479 | DOI: 10.1002/ctm2.409

Long noncoding RNAs (lncRNAs) are functionally associated with cancer development and progression. Although gene copy number variation (CNV) is common in hepatocellular carcinoma (HCC), it is not known how CNV in lncRNAs affects HCC progression and recurrence. We aimed to identify a CNV-related lncRNA involved in HCC progression and recurrence and illustrate its underlying mechanisms and prognostic value. We analyzed the whole genome sequencing (WGS) data of matched cancerous and noncancerous liver samples from 49 patients with HCC to identify lncRNAs with CNV. The results were validated in another cohort of 238 paired HCC and nontumor samples by TaqMan copy number assay. We preformed Kaplan-Meier analysis and log-rank test to identify lncRNA CNV with prognostic value. We conducted loss- and gain-of-function studies to explore the biological functions of LINC01133 in vitro and in vivo. The competing endogenous RNAs (ceRNAs) mechanism was clarified by microRNA sequencing (miR-seq), quantitative real-time PCR (qRT-PCR), western blot, and dual-luciferase reporter assays. We confirmed the binding mechanism between lncRNA and protein by RNA pull-down, RNA immunoprecipitation, qRT-PCR, and western blot analyses. Genomic copy numbers of LINC01133 were increased in HCC, which were positively related with the elevated expression of LINC01133. Increased copy number of LINC01133 predicted the poor prognosis in HCC patients. LINC01133 overexpression in HCC cells promoted proliferation and aggressive phenotypes in vitro, and facilitated tumor growth and lung metastasis in vivo, whereas LINC01133 knockdown had the opposite effects. LINC01133 sponged miR-199a-5p, resulting in enhanced expression of SNAI1, which induced epithelial-to-mesenchymal transition (EMT) in HCC cells. In addition, LINC01133 interacted with Annexin A2 (ANXA2) to activate the ANXA2/STAT3 signaling pathway. LINC01133 promotes HCC progression by sponging miR-199a-5p and interacting with ANXA2. LINC01133 CNV gain is predictive of poor prognosis in patients with HCC.
Endothelial Cell Proliferation and Vascular Endothelial Growth Factor Expression in Primary Colorectal Cancer and Corresponding Liver Metastases.

Asian Pac J Cancer Prev. 2015;16(11):4549-53.

Raluca BA, Cimpean AM, Cioca A, Cretu O, Mederle O, Ciolofan A, Gaje P, Raica M.
PMID: 26107202

Abstract BACKGROUND: . Colorectal carcinoma (CRC) is one of the major causes of cancer death worldwide. Data from the literature indicate differences between the proliferation rate of endothelial cells relative to the morphology growth type, possibly due to origin of specimens (autopsy material, surgery fragments) or quantification methods. Vascular endothelial growth factor (VEGF) is a factor that stimulates the proliferation of endothelial cells. It is expressed in more than 90% of cases of metastatic CRC. AIM: The aim of this study was to evaluate the endothelial cell proliferation and VEGF expression in primary tumors and corresponding liver metastases. MATERIALS AND METHODS: Our study included 24 recent biopsies of primary tumors and corresponding liver metastases of CRC cases. CD34/ Ki67 double immunostaining and RNA scope assay for VEGF were performed. RESULTS: In the primary tumors analysis of VEGFmRNA expression indicated no significant correlation with differentiation grade, proliferative and non-proliferative vessels in the intratumoral and peritumoral areas. In contrast, in the corresponding liver metastases, VEGFmRNA expression significantly correlated with the total number of non- proliferative vessels and total number of vessels. CD34/ Ki67 double immunostaining in the cases with poorly differentiated carcinoma indicated a high number of proliferating endothelial cells in the peritumoral area and a low number in the intratumoral area for the primary tumor. Moderately differentiated carcinomas of colon showed no proliferating endothelial cells in the intratumoral area in half of the cases included in the study, for both, primary tumor and liver metastasis. In well differentiated CRCs, in primary tumors, a high proliferation rate of endothelial cells in the intratumoral area and a lower proliferation rate in the peritumoral area were found. A low value was found in corresponding liver metastasis. CONCLUSIONS: The absence of proliferative endothelial cells in half of the cases for the primary tumors and liver metastases in moderately differentiated carcinoma suggest a vascular mimicry phenomenon. The mismatch between the total number of vessels and endothelial proliferation in primary tumors indicate that a functional vascular network is already formed or the existence of some mechanisms influenced by other angiogenic factors.
Interleukin 1 Up-regulates MicroRNA 135b to Promote Inflammation-Associated Gastric Carcinogenesis in Mice.

Gastroenterology

2019 Feb 14

Han TS, Voon DC, Oshima H, Nakayama M, Echizen K, Sakai E, Yong ZWE, Murakami K, Yu L, Minamoto T, Ock CY, Jenkins BJ, Kim SJ, Yang HK, Oshima M.
PMID: 30508510 | DOI: 10.1053/j.gastro.2018.11.059

Abstract

BACKGROUND & AIMS:

Gastritis is associated with development of stomach cancer, but little is known about changes in microRNA expression patterns during gastric inflammation. Specific changes in gene expression in epithelial cells are difficult to monitor because of the heterogeneity of the tissue. We investigated epithelial cell-specific changes in microRNA expression during gastric inflammation and gastritis-associated carcinogenesis in mice.

METHODS:

We used laser microdissection to enrich epithelial cells from K19-C2mE transgenic mice, which spontaneously develop gastritis-associated hyperplasia, and Gan mice, which express activated prostaglandin E2 and Wnt in the gastric mucosa and develop gastric tumors. We measured expression of epithelial cell-enriched microRNAs and used bioinformatics analyses to integrate data from different systems to identify inflammation-associated microRNAs. We validated our findings in gastric tissues from mice and evaluated protein functions in gastric cell lines (SNU-719, SNU-601, SNU-638, AGS, and GIF-14) and knockout mice. Organoids were cultured from gastric corpus tissues of wild-type and miR-135b-knockout C57BL/6 mice. We measured levels of microRNAs in pairs of gastric tumors and nontumor mucosa from 28 patients in Japan.

RESULTS:

We found microRNA 135b (miR-135B) to be the most overexpressed microRNA in gastric tissues from K19-C2mE and Gan mice: levels increased during the early stages of gastritis-associated carcinogenesis. Levels of miR-135B were also increased in gastric tumor tissues from gp130F/F mice and patients compared with nontumor tissues. In gastric organoids and immortalized cell lines, expression of miR-135B was induced by interleukin 1 signaling. K19-C2mE mice with disruption of Mir-135b developed hyperplastic lesions that were 50% smaller than mice without Mir-135b disruption and had significant reductions in cell proliferation. Expression of miR-135B in gastric cancer cell lines increased their colony formation, migration, and sphere formation. We identified FOXN3 and RECK messenger RNAs (mRNAs) as targets of miR-135B; their knockdown reduced migration of gastric cancer cell lines. Levels of FOXN3 and RECK mRNAs correlated inversely with levels of miR-135B in human gastric tumors and in inflamed mucosa from K19-C2mE mice.

CONCLUSIONS:

We found expression of miR-135B to be up-regulated by interleukin L1 signaling in gastric cancer cells and organoids. miR-135B promotes invasiveness and stem-cell features of gastric cancer cells in culture by reducing FOXN3 and RECK messenger RNAs. Levels of these messenger RNA targets, which encode tumor suppressor, are reduced in human gastric tumors.

In situ analysis of HER2 mRNA in gastric carcinoma: comparison with fluorescence in situ hybridization, dual-color silver in situ hybridization, and immunohistochemistry. 

Human pathology, 44(4):487–94.

Kim MA, Jung JE, Lee HE, Yang HK, Kim WH (2013)
PMID: 23084583 | DOI: 10.1016/j.humpath.2012.06.022.

The importance of anti-HER2 therapy has focused attention on the ability of clinical assays to correctly assign HER2 amplification status. In the present study, we evaluated HER2 mRNA expression using a new mRNA in situ detection technique called RNAscope in 211 cases of formalin-fixed, paraffin-embedded gastric carcinoma. In addition, we compared the results with the conventional methods of immunohistochemistry, fluorescence in situ hybridization, and dual-color silver in situ hybridization. RNA in situ hybridization (in situ hybridization) showed that 162 cases (76.8%) were score 0, 5 cases (2.4%) were score 1, 10 cases (4.7%) were score 2, 13 cases (6.2%) were score 3, and 21 cases (10.0%) were score 4. HER2 transcription levels were found to be significantly related to pT class, pN class, and tumor recurrence. mRNA expression was well correlated with protein overexpression and gene amplification; 20 cases out of 23 with DNA amplification showed a score of 4 in RNA in situ hybridization (P < .001). Three cases showed false negative and one case showed false positive results by in situ hybridization. More studies are needed to determine whether the in situ hybridization method can identify additional patients that may benefit from anti-HER2 therapy or exclude those who may be resistant to anti-HER2 therapy.
Automated Quantitative RNA in situ Hybridization for Resolution of Equivocal and Heterogeneous ERBB2 (HER2) Status in Invasive Breast Carcinoma.

The Journal of Molecular Diagnostics, 15(2), 210–219.

Wang Z, Portier BP, Gruver AM, Bui S, Wang H, Su N, Vo HT, Ma XJ, Luo Y, Budd GT, Tubbs RR (2013).
PMID: 23305906 | DOI: 10.1016/j.jmoldx.2012.10.003.

Patient management based on HER2 status in breast carcinoma is an archetypical example of personalized medicine but remains hampered by equivocal testing and intratumoral heterogeneity. We developed a fully automated, quantitative, bright-field in situ hybridization technique (RNAscope), applied it to quantify single-cell HER2 mRNA levels in 132 invasive breast carcinomas, and compared the results with those by real-time quantitative PCR (qPCR) and Food and Drug Administration-approved methods, including fluorescence in situ hybridization (FISH), IHC, chromogenic in situ hybridization, and dual in situ hybridization. Both RNAscope and qPCR were 97.3% concordant with FISH in cases in which FISH results were unequivocal. RNAscope was superior to qPCR in cases with intratumoral heterogeneity or equivocal FISH results. This novel assay may enable ultimate HER2 status resolution as a reflex test for current testing algorithms. Quantitative in situ RNA measurement at the single-cell level may be broadly applicable in companion diagnostic applications.
MALAT1 Long Non-coding RNA Expression in Thyroid Tissues: Analysis by In Situ Hybridization and Real-Time PCR.

Endocr Pathol.

2016 Sep 30

Zhang R, Hardin H, Huang W, Chen J, Asioli S, Righi A, Maletta F, Sapino A, Lloyd RV.
PMID: 27696303 | DOI: 10.1007/s12022-016-9453-4

Long non-coding RNAs (lncRNAs) are important for transcription and for epigenetic or posttranscriptional regulation of gene expression and may contribute to carcinogenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNA involved in the regulation of the cell cycle, cell proliferation, and cell migration, is known to be deregulated in multiple cancers. Here, we analyzed the expression of MALAT1 on 195 cases of benign and malignant thyroid neoplasms by using tissue microarrays for RNA in situ hybridization (ISH) and real-time PCR. MALAT1 is highly expressed in normal thyroid (NT) tissues and thyroid tumors, with increased expression during progression from NT to papillary thyroid carcinomas (PTCs) but is downregulated in poorly differentiated thyroid cancers (PDCs) and anaplastic thyroid carcinomas (ATCs) compared to NT. Induction of epithelial to mesenchymal transition (EMT) by transforming growth factor (TGF)-beta in a PTC cell line (TPC1) led to increased MALAT1 expression, supporting a role for MALAT1 in EMT in thyroid tumors. This is the first ISH study of MALAT1 expression in thyroid tissues. It also provides the first piece of evidence suggesting MALAT1 downregulation in certain thyroid malignancies. Our findings support the notion that ATCs may be molecularly distinct from low-grade thyroid malignancies and suggest that MALAT1 may function both as an oncogene and as a tumor suppressor in different types of thyroid tumors.

HIV fragments detected in Kaposi sarcoma tumor cells in HIV-infected patients

Medicine

2022 Oct 28

Chen, TY;Yang, HW;Lin, DS;Huang, ZD;Chang, L;
PMID: 36316837 | DOI: 10.1097/MD.0000000000031310

Kaposi sarcoma (KS) is a malignant vascular neoplasm caused by KS-associated herpesvirus (KSHV) infection. HIV plays a major role in KS pathogenesis. KS in HIV usually produces more malignant features than classic KS. Despite the close KS-HIV relationship, no study has reported the existence of HIV in KS tissue. We used ddPCR to detect HIV and KSHV in HIV+ KS samples and classic KS control. We verified KS cell types through immunohistochemistry and applied hypersensitive in situ hybridization (ISH) to detect HIV and KSHV in tumor cells. Furthermore, we co-stained samples with ISH and immunohistochemistry to identify HIV and KSHV in specific cell types. Regarding pathological stages, the KS were nodular (58.3%), plaque (33.3%), and patch (8.3%) tumors. Moreover, ddPCR revealed HIV in 58.3% of the KS samples. ISH revealed positive Pol/Gag mRNA signals in CD34 + tumor cells from HIV + patients (95.8%). HIV signals were absent in macrophages and other inflammatory cells. Most HIV + KS cells showed scattered reactive particles of HIV and KSHV. We demonstrated that HIV could infect CD34 + tumor cells and coexist with KSHV in KS, constituting a novel finding. We hypothesized that the direct KSHV-HIV interaction at the cellular level contributes to KS oncogenesis.
Widespread in situ follicular neoplasia in patients who subsequently developed follicular lymphoma

The Journal of pathology

2021 Dec 26

Dobson, R;Wotherspoon, A;Liu, SA;Cucco, F;Chen, Z;Tang, Y;Du, MQ;
PMID: 34957565 | DOI: 10.1002/path.5861

In situ follicular neoplasia (ISFN) is usually an occasional incidental finding in lymph nodes by BCL2 immunohistochemistry, and its true scale is unknown. We have identified 6 cases of follicular lymphoma (FL) with a history of solid neoplasm 4-16 years ago, from which ISFN was identified widely in the surgically cleared lymph nodes (LNs). Using clone-specific PCR and BaseScope in situ hybridisation with primers or probes specific to the VDJ or BCL2-IGHJ junction sequence, we confirmed the clonal identity among different ISFNs and overt-FL in each of the 4 cases successfully investigated. Mutation analyses of overt-FL by targeted next-generation sequencing identified multiple potential pathogenic changes involving CREBBP, EZH2, KMT2D, TNFRS14 and STAT6. Further investigations of these mutations in paired ISFNs using Fluidigm PCR and Illumina sequencing showed the presence of the FL associated mutations in early lesions for 2 of the 6 cases investigated (CREBBP and KMT2D in one case and STAT6 in the other), with one case displaying stepwise accumulation of its observed mutations. Remarkably, there were considerable divergences in BCL2 variants among different ISFN involved lymph nodes in all 4 cases successfully investigated, indicating ongoing intraclonal diversification by somatic hypermutation machinery. Our findings demonstrate widespread distribution of ISFN lesions, further implicating their dynamic nature with the neoplastic cells undergoing active trafficking and clonal evolution. This article is protected by
Localization of Bovine Papillomavirus Nucleic Acid in Equine Sarcoids.

Vet Pathol. 2015 Jul 27.

Gaynor AM, Zhu KW, Cruz FN Jr, Affolter VK, Pesavento PA.
PMID: 26215759 | DOI: 0300985815594852

Bovine papillomaviruses (BPV1/BPV2) have long been associated with equine sarcoids; deciphering their contribution has been difficult due to their ubiquitous presence on skin and in the environment, as well as the lack of decent techniques to interrogate their role in pathogenesis. We have developed and characterized an in situ hybridization (ISH) assay that uses a pool of probes complementary to portions of the E5, E6, and E7 genes. This assay is highly sensitive for direct visualization of viral transcript and nucleic acid in routinely processed histopathologic samples. We demonstrate here the visualization of BPV nucleic acid in 18 of 18 equine sarcoids, whereas no detectable viral DNA was present in 15 of 15 nonsarcoid controls by this technique. In nearly 90% (16/18) of the sarcoids, 50% or more of the fibroblastic cell nuclei distributed throughout the neoplasm had detectable hybridization. In the remaining 2 cases, fewer than half of the fibroblastic cells contained detectable hybridization, but viral nucleic acid was also detected in epithelial cells of the sebaceous glands, hair follicles and epidermis. A sensitive ISH assay is an indispensable addition to the molecular methods used to detect viral nucleic acid in tissue. We have used this technique to determine the specific cellular localization and distribution of BPV in a subset of equine sarcoids.
The CASC15 Long Intergenic Non-Coding RNA Locus is Involved in Melanoma Progression and Phenotype-Switching

J Invest Dermatol. 2015 May 27.

Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N, Donovan NC, Kiyohara E, Hsu S, Nelson N, Izraely S, Sagi-Assif O, Witz IP, Ma XJ, Luo Y, Hoon DS.
PMID: 26020126

In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma.
The PAS positive material in gastric cancer cells of signet ring type is not mucin.

Exp Mol Pathol. Feb 28. pii: S0014-4800(14)00023–9.

ørdal O, Qvigstad G, Nordrum IS, Sandvik AK, Gustafsson BI, Waldum H (2014)
PMID: 24589859 | DOI: 10.1016/j.yexmp.2014.02.008

PURPOSE:The purpose of this study is to assess the exocrine and neuroendocrine properties of tumour cells in diffuse gastric cancer with signet ring cell differentiation. MATERIAL AND METHODS: Mucin mRNA and protein expressions (MUC1, 2, 3, 4, 5AC, 6 and MUC13) were assessed by immunohistochemistry and in situ hybridization. The neuroendocrine properties were evaluated by protein and mRNA expression of the general neuroendocrine markers chromogranin A and synaptophysin. RESULTS: No MUC expression was observed in signet ring tumour cells including the amorphous substance in any of the nine cases. All cases showed immunoreactivity to synaptophysin, and seven out of nine cases immunoreactivity to chromogranin A in signet ring and non-signet ring tumour cells. Chromogranin A mRNA expression was observed in tumour cells in all samples with retained mRNA. CONCLUSIONS: The lack of MUC protein and mRNA in signet ring tumour cells suggests the amorphous substance is not mucin. The lack of MUC mRNA expression in non-signet ring tumour cells questions exocrine differentiation in this tumour group. The abundant protein expression of the general neuroendocrine markers CgA and synaptophysin, and mRNA expression in tumour cells strengthens the hypothesis that this tumour group may be of neuroendocrine origin.

Pages

  • « first
  • ‹ previous
  • …
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?