Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (244) Apply RNAscope 2.0 Assay filter
  • RNAscope (177) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (134) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (90) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (88) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (80) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (52) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 VS Assay (37) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (35) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Duplex (33) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (31) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • TBD (24) Apply TBD filter
  • Basescope (19) Apply Basescope filter
  • RNAscope Multiplex Fluorescent v2 (10) Apply RNAscope Multiplex Fluorescent v2 filter
  • miRNAscope (7) Apply miRNAscope filter
  • RNAscope HiPlex v2 assay (5) Apply RNAscope HiPlex v2 assay filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD duplex reagent kit (4) Apply RNAscope 2.5 HD duplex reagent kit filter
  • DNAscope HD Duplex Reagent Kit (3) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope ISH Probe High Risk HPV (3) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Reagent Kit (2) Apply RNAscope 2.5 HD Reagent Kit filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • (-) Remove Cancer filter Cancer (1368)
  • HPV (158) Apply HPV filter
  • Infectious Disease (120) Apply Infectious Disease filter
  • lncRNA (67) Apply lncRNA filter
  • Immunotherapy (52) Apply Immunotherapy filter
  • Neuroscience (42) Apply Neuroscience filter
  • Stem Cells (40) Apply Stem Cells filter
  • Inflammation (31) Apply Inflammation filter
  • LncRNAs (16) Apply LncRNAs filter
  • Tumor microenvironment (6) Apply Tumor microenvironment filter
  • circRNAs (5) Apply circRNAs filter
  • Stem cell (5) Apply Stem cell filter
  • CGT (4) Apply CGT filter
  • Development (4) Apply Development filter
  • miRNAs (4) Apply miRNAs filter
  • therapeutics (4) Apply therapeutics filter
  • intratumoral microbiota (3) Apply intratumoral microbiota filter
  • Other: Methods (3) Apply Other: Methods filter
  • Pain (3) Apply Pain filter
  • Cell Therapy (2) Apply Cell Therapy filter
  • circRNA (2) Apply circRNA filter
  • Developmental (2) Apply Developmental filter
  • Engineered T cells (2) Apply Engineered T cells filter
  • Epstein-Barr (2) Apply Epstein-Barr filter
  • Gene Therapy (2) Apply Gene Therapy filter
  • HIV (2) Apply HIV filter
  • Immuno-Oncology (2) Apply Immuno-Oncology filter
  • Immunotherapy: NK-Cell Therapy (2) Apply Immunotherapy: NK-Cell Therapy filter
  • Liver (2) Apply Liver filter
  • Lung (2) Apply Lung filter
  • noncoding RNA (2) Apply noncoding RNA filter
  • Radiotherapy (2) Apply Radiotherapy filter
  • Antimicrobial Chemotherapy (1) Apply Antimicrobial Chemotherapy filter
  • Bone (1) Apply Bone filter
  • Canine Cancer (1) Apply Canine Cancer filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Diet (1) Apply Diet filter
  • Endocrinology (1) Apply Endocrinology filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Cutavirus (1) Apply Infectious Disease: Cutavirus filter
  • Infectiouse Disease: EBV (1) Apply Infectiouse Disease: EBV filter
  • IO (1) Apply IO filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Reproductive Biology (1) Apply Other: Reproductive Biology filter
  • Single Cell Sequencing (1) Apply Single Cell Sequencing filter
  • Skin (1) Apply Skin filter
  • Tumor Microbiome (1) Apply Tumor Microbiome filter
  • Virotherapy (1) Apply Virotherapy filter

Category

  • Publications (1368) Apply Publications filter
Localization of macrophage subtypes and neutrophils in the prostate tumor microenvironment and their association with prostate cancer racial disparities

The Prostate

2022 Aug 16

Maynard, JP;Godwin, TN;Lu, J;Vidal, I;Lotan, TL;De Marzo, AM;Joshu, CE;Sfanos, KS;
PMID: 35971807 | DOI: 10.1002/pros.24424

Black men are two to three times more likely to die from prostate cancer (PCa) than White men. This disparity is due in part to discrepancies in socioeconomic status and access to quality care. Studies also suggest that differences in the prevalence of innate immune cells and heightened function in the tumor microenvironment of Black men may promote PCa aggressiveness.We evaluated the spatial localization of and quantified CD66ce+ neutrophils by immunohistochemistry and CD68+ (pan), CD80+ (M1), and CD163+ (M2) macrophages by RNA in situ hybridization on formalin-fixed paraffin-embedded tissues from organ donor "normal" prostate (n = 9) and radical prostatectomy (n = 38) tissues from Black and White men. Neutrophils were quantified in PCa and matched benign tissues in tissue microarray (TMA) sets comprised of 560 White and 371 Black men. Likewise, macrophages were quantified in TMA sets comprised of tissues from 60 White and 120 Black men. The phosphatase and tensin homolog (PTEN) and ETS transcription factor ERG (ERG) expression status of each TMA PCa case was assessed via immunohistochemistry. Finally, neutrophils and macrophage subsets were assessed in a TMA set comprised of distant metastatic PCa tissues collected at autopsy (n = 6) sampled across multiple sites.CD66ce+ neutrophils were minimal in normal prostates, but were increased in PCa compared to benign tissues, in low grade compared to higher grade PCa, in PCa tissues from White compared to Black men, and in PCa with PTEN loss or ERG positivity. CD163+ macrophages were the predominant macrophage subset in normal organ donor prostate tissues from both Black and White men and were significantly more abundant in organ donor compared to prostatectomy PCa tissues. CD68,+  CD80,+ and CD163+ macrophages were significantly increased in cancer compared to benign tissues and in cancers with ERG positivity. CD68+ and CD163+ macrophages were increased in higher grade cancers compared to low grade cancer and CD80 expression was significantly higher in benign prostatectomy tissues from Black compared to White men.Innate immune cell infiltration is increased in the prostate tumor microenvironment of both Black and White men, however the composition of innate immune cell infiltration may vary between races.
Novel RNA Hybridization Method for the In Situ Detection of ETV1, ETV4, and ETV5 Gene Fusions in Prostate Cancer.

Appl Immunohistochem Mol Morphol. 2014 Sep;22(8):e32-40.

Kunju LP, Carskadon S, Siddiqui J, Tomlins SA, Chinnaiyan AM, Palanisamy N.
PMID: 25203299 | DOI: 10.1097/PAI.0000000000000095.

The genetic basis of 50% to 60% of prostate cancer (PCa) is attributable to rearrangements in E26 transformation-specific (ETS) (ERG, ETV1, ETV4, and ETV5), BRAF, and RAF1 genes and overexpression of SPINK1. The development and validation of reliable detection methods are warranted to classify various molecular subtypes of PCa for diagnostic and prognostic purposes. ETS gene rearrangements are typically detected by fluorescence in situ hybridization and reverse-transcription polymerase chain reaction methods. Recently, monoclonal antibodies against ERG have been developed that detect the truncated ERG protein in immunohistochemical assays where staining levels are strongly correlated with ERG rearrangement status by fluorescence in situ hybridization. However, specific antibodies for ETV1, ETV4, and ETV5 are unavailable, challenging their clinical use. We developed a novel RNA in situ hybridization-based assay for the in situ detection of ETV1, ETV4, and ETV5 in formalin-fixed paraffin-embedded tissues from prostate needle biopsies, prostatectomy, and metastatic PCa specimens using RNA probes. Further, with combined RNA in situ hybridization and immunohistochemistry we identified a rare subset of PCa with dual ETS gene rearrangements in collisions of independent tumor foci. The high specificity and sensitivity of RNA in situ hybridization provides an alternate method enabling bright-field in situ detection of ETS gene aberrations in routine clinically available PCa specimens.
Glucagon-Like Peptide-1 Receptor Expression in Normal and Neoplastic Human Pancreatic Tissues.

Pancreas.

2016 Apr 01

Dal Molin M, Kim H, Blackford A, Sharma R, Goggins M.
PMID: 26495786 | DOI: 10.1097/MPA.0000000000000521.

Abstract

OBJECTIVES:

Studies have proposed pro-oncogenic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists in the pancreas by promoting GLP-1R overactivation in pancreatic cells. However, the expression of GLP-1R in normal and neoplastic pancreatic cells remains poorly defined, and reliable methods for detecting GLP-1R in tissue specimens are needed.

METHODS:

We used RNA in situ hybridization to quantify glp-1r RNA in surgically resected human pancreatic specimens, including pancreatic ductal adenocarcinoma (PDAC), preinvasive intraepithelial lesions (pancreatic intraepithelial neoplasia), and non-neoplastic ductal, acinar, and endocrine cells. A mixed-effect linear regression model was used to investigate the relationship between glp-1r signals and all cells, ordered by increasing grade of dysplasia.

RESULTS:

All cell types had evidence of glp-1r transcripts, with the highest expression in endocrine cells and lowest in ductal cells. The slope of the fitted line was not significantly different from zero (0.07; 95% confidence interval, -0.0094 to 0.244; P = 0.39), suggesting that progression from normal cells to PDAC is not associated with a parallel increase in glp-1r RNA. A series of pairwise comparisons between all cell types with respect to their glp-1r expression showed no significant difference in glp-1r in cancer, pancreatic intraepithelial neoplasia, and acinar and ductal cells.

CONCLUSIONS:

Our study supports the lack of evidence for GLP-1R overexpression in PDAC.

Fetuin-A (alpha 2HS glycoprotein) modulates growth, motility, invasion, and senescence in high-grade astrocytomas

Cancer Med.

2016 Nov 23

Nangami GN, Sakwe AM, Izban MG, Rana T, Lammers PE, Thomas P, Chen Z, Ochieng J.
PMID: 27882696 | DOI: 10.1002/cam4.940

Glioblastomas (high-grade astrocytomas) are highly aggressive brain tumors with poor prognosis and limited treatment options. In the present studies, we have defined the role of fetuin-A, a liver-derived multifunctional serum protein, in the growth of an established glioblastoma cell line, LN229. We hereby demonstrate that these cells synthesize ectopic fetuin-A which supports their growth in culture in the absence of serum. We have demonstrated that a panel of tissue microarray (TMA) of glioblastomas also express ectopic fetuin-A. Knocking down fetuin-A using shRNA approach in LN229, significantly reduced their in vitro growth as well as growth and invasion in vivo. The fetuin-A knockdown subclones of LN229 (A and D) also had reduced motility and invasive capacity. Treatment of LN229 cells with asialofetuin (ASF), attenuated their uptake of labeled fetuin-A, and induced senescence in them. Interestingly, the D subclone that had ~90% reduction in ectopic fetuin-A, underwent senescence in serum-free medium which was blunted in the presence of purified fetuin-A. Uptake of labeled exosomes was attenuated in fetuin-A knockdown subclones A and D. Taken together, the studies demonstrate the impact of fetuin-A as significant node of growth, motility, and invasion signaling in glioblastomas that can be targeted for therapy.

Presence of lytic Epstein-Barr virus infection in nasopharyngeal carcinoma.

Head Neck.

2018 Mar 09

Yu F, Lu Y, Petersson F, Wang DY, Loh KS.
PMID: 29522272 | DOI: 10.1002/hed.25131

Abstract

BACKGROUND:

Chromogenic Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (EBER-ISH) is the gold standard to detect Epstein-Barr virus (EBV) but it is difficult to use in conjunction with immunohistochemistry (IHC). In this study, our purpose was to validate the sensitivity and specificity of RNAscope in detection of EBV infection in nasal epithelium and its stroma.

METHODS:

Fluorescence-based RNAscope EBER-ISH, BRLF1-ISH, and lineage marker-IHC were performed on archived formalin-fixed paraffin-embedded tissues from normal nasal cavity (n = 5), nasopharynx (n = 8), and nasopharyngeal carcinoma (NPC) specimens (n = 10).

RESULTS:

The EBERs were detected in 10 of 10 NPC samples but was absent in all normal tissues from the nasal cavity and nasopharynx. The EBERs were exclusively located in pan-cytokeratin (pan-CK)-positive tumor epithelial cells but not in CD45-positive leukocytes and vimentin-positive stromal fibroblasts. The level of EBER expression varied in tumor cells within patient and between patients as well. Additionally, 5 of 10 patients had positive BRLF-ISH.

CONCLUSION:

We developed a simple and reproducible method to simultaneously detect mRNA and protein in formalin-fixed paraffin-embedded tissues of NPC. As a single staining, traditional EBER continues to be useful; however, for interpretation of the phenotype of EBV-infected cells, RNAscope is superior. Significantly, we showed that lytic EBV infection took place in NPC tumors.

Integrative Analysis of Programmed Death-Ligand 1 DNA, mRNA, and Protein Status and their Clinicopathological Correlation in Diffuse Large B-cell Lymphoma.

Histopathology. 2018 Oct 4.

2018 Oct 04

Sun C, Jia Y, Wang W, Bi R, Wu L, Bai Q, Zhou X.
PMID: 30286249 | DOI: 10.1111/his.13765

Abstract AIMS: The Protein expression of Programmed Death-Ligand 1 (PD-L1) has been recognized a poor prognostic biomarker in diffuse large B-cell lymphoma (DLBCL). We aim to detect PD-L1 DNA and mRNA status, and explore whether they contribute to protein expression and their clinicopathological correlation in DLBCL. METHODS AND RESULTS: In the study, we detected PD-L1 status in three different levels by Fluorescence in situ hybridization, RNA in situ hybridization and immunohistochemistry in 287 DLBCL samples with follow-ups, respectively. Their correlation and clinical pathological relevance was further analyzed. Our results showed that 1.7% (3/175) patients had PD-L1 amplification, 19.9% (57/287) PD-L1 mRNA high expression and 11.8% (34/287) high protein expression. Both mRNA and protein high expression of PD-L1 was significantly elevated in non-GCB than that in GCB DLBCL (P<0.05). In addition, the patients with PD-L1 mRNA or protein high expression but not DNA amplification have significantly poorer overall survival (OS) than that with PD-L1 low expression (P<0.05). Furthermore, we found that PD-L1 mRNA and protein expression are highly correlated (P=0.012), which was observed in all three samples with PD-L1 DNA amplification. CONCLUSIONS: PD-L1 DNA amplification is a rare event, PD-L1 mRNA mainly contribute to the protein high expression, and the latter two will serve as important biomarkers for predicting prognosis and selecting patients for immunotherapy in DLBCL.
Human papillomavirus infection and its biomarkers' expressions in laryngeal basaloid squamous cell carcinoma.

J Int J Clin Exp Pathol (2018)

2018 Nov 15

Cui L, Qu C, Liu H.
| DOI: ISSN:1936-2625/IJCEP0085220

Abstract: Aims: To investigate the frequency and transcriptional activity of HPV and its correlation to p16 and p21 expression in basaloid squamous cell carcinoma (BSCC) of the larynx. Methods: We evaluated tissues from 29 patients with BSCC of the larynx for the expressions of p16 and p21 proteins by immunohistochemistry (IHC) and for HPV E6 and E7 mRNA by RNA in situ hybridization (ISH). The presence of genotype-specific HPV DNA was evaluated using PCR-RDB in formalin-fixed paraffin-embedded tissues. P16 and p21 expression and HPV DNA status were correlated with clinicopathological features. Results: HPV DNA was detected in 8 of 29 (27.59%) patients, with HPV-16 being the predominant genotype. P16 and p21-positivity were observed in 7/29 (24.14%) and 8/29 (27.59%) patients, respectively. HPV was not correlated with p16 expression (P > 0.05). However, p21 expression was significantly higher in HPV-positive tumors than in HPV-negative tumors (P < 0.05). No cases exhibited transcriptionally active HPV in our series. Conclusion: Our findings suggest that a small fraction of BSCC of the larynx is HPV DNA-positive in this Chinese population, p21 expression was significantly higher in HPV-positive tumors, and no cases were HPV transcriptionally active in this small cohort. Further research of HPV and its role in BSCC of the larynx are warranted.
Up-Regulation of Activating Transcription Factor 3 in Human Fibroblasts Inhibits Melanoma Cell Growth and Migration Through a Paracrine Pathway

Front Oncol

2020 Apr 21

Zu T, Wen J, Xu L, Li H, Mi J, Li H, Brakebusch C, Fisher DE, Wu X
PMID: 32373541 | DOI: 10.3389/fonc.2020.00624

The treatment of melanoma has remained a difficult challenge. Targeting the tumor stroma has recently attracted attention for developing novel strategies for melanoma therapy. Activating transcription factor 3 (ATF3) plays a crucial role in regulating tumorigenesis and development, but whether the expression of ATF3 in human dermal fibroblasts (HDFs) can affect melanoma development hasn't been studied. Our results show that ATF3 expression is downregulated in stromal cells of human melanoma. HDFs expressing high levels of ATF3 suppressed the growth and migration of melanoma cells in association with downregulation of different cytokines including IL-6 in vitro. In vivo, HDFs with high ATF3 expression reduced tumor formation. Adding recombinant IL-6 to melanoma cells reversed those in vitro and in vivo effects, suggesting that ATF3 expression by HDFs regulates melanoma progression through the IL-6/STAT3 pathway. More importantly, HDFs pretreated with cyclosporine A or phenformin to induce ATF3 expression inhibited melanoma cell growth in vitro and in vivo. In summary, our study reveals that ATF3 suppresses human melanoma growth and that inducing the expression of ATF3 in HDFs can inhibit melanoma growth, a new potential melanoma therapeutic approach
MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression

bioRxiv : the preprint server for biology

2023 Feb 21

Chen, J;Zheng, Q;Hicks, JL;Trabzonlu, L;Ozbek, B;Jones, T;Vaghasia, A;Larman, TC;Wang, R;Markowski, MC;Denmeade, SR;Pienta, KJ;Hruban, RH;Antonaraskis, ES;Gupta, A;Dang, CV;Yegnasubramanian, S;De Marzo, AM;
PMID: 36865273 | DOI: 10.1101/2023.02.20.529259

Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by two orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
A regulatory network comprising let-7 miRNA and SMUG1 is associated with good prognosis in ER+ breast tumours

Nucleic acids research

2022 Sep 26

Lirussi, L;Ayyildiz, D;Liu, Y;Montaldo, NP;Carracedo, S;Aure, MR;Jobert, L;Tekpli, X;Touma, J;Sauer, T;Dalla, E;Kristensen, VN;Geisler, J;Piazza, S;Tell, G;Nilsen, H;
PMID: 36156150 | DOI: 10.1093/nar/gkac807

Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.
A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide

Viruses

2021 Jul 09

Carlander, A;Jakobsen, K;Bendtsen, S;Garset-Zamani, M;Lynggaard, C;Jensen, J;Grønhøj, C;Buchwald, C;
| DOI: 10.3390/v13071326

Significant variation in human papillomavirus (HPV) prevalence in oropharyngeal squamous cell carcinoma (OPSCC) across countries ranging from 11% in Brazil to 74% in New Zealand has been reported earlier. The aim of this study was to systematically review the most recently published studies on the occurrence of HPV in OPSCC globally. PubMed and Embase were systematically searched for articles assessing the occurrence of HPV+ OPSCC published between January 2016 and May 2021. Studies with a study period including 2015 and the following years were included. Both HPV DNA and/or p16 were accepted as indicators of HPV+ OPSCC. 31 studies were enrolled comprising 49,564 patients with OPSCC (range 12-42,024 patients per study) from 26 different countries covering all continents. The lowest occurrences of HPV+ OPSCC were observed in India (0%) and Spain (10%) and the highest occurrences were observed in Lebanon (85%) and Sweden (70%). We observed great variation in HPV prevalence in OPSCC worldwide varying from 0% to 85%. The highest occurrences of HPV+ OPSCC were found in general in Northern European countries, USA, Lebanon, China, and South Korea. We observed a trend of increase in HPV-positivity, indicating a mounting burden of HPV+ OPSCC.
Melatonin suppresses hepatocellular carcinoma progression via lncRNA-CPS1-IT-mediated HIF-1α inactivation

Oncotarget.

2017 Jul 18

Wang TH, Wu CH, Yeh CT, Su SC, Hsia SM, Liang KH, Chen CC, Hsueh C, Chen CY.
PMID: - | DOI: 10.18632/oncotarget.19316

Melatonin is the primary pineal hormone that relays light/dark cycle information to the circadian system. It was recently reported to exert intrinsic antitumor activity in various cancers. However, the regulatory mechanisms underlying the antitumor activity of melatonin are poorly understood. Moreover, a limited number of studies have addressed the role of melatonin in hepatocellular carcinoma (HCC), a major life-threatening malignancy in both sexes in Taiwan. In this study, we investigated the antitumor effects of melatonin in HCC and explored the regulatory mechanisms underlying these effects. We observed that melatonin significantly inhibited the proliferation, migration, and invasion of HCC cells and significantly induced the expression of the transcription factor FOXA2 in HCC cells. This increase in FOXA2 expression resulted in upregulation of lncRNA-CPS1 intronic transcript 1 (CPS1-IT1), which reduced HIF-1α activity and consequently resulted in the suppression of epithelial-mesenchymal transition (EMT) progression and HCC metastasis. Furthermore, the results of the in vivo experiments confirmed that melatonin exerts tumor suppressive effects by reducing tumor growth. In conclusion, our findings suggested that melatonin inhibited HCC progression by reducing lncRNA-CPS1-IT1-mediated EMT suppression and indicated that melatonin could be a promising treatment for HCC.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?