ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
The FEBS journal
2021 Apr 15
Sur, S;Ray, RB;
PMID: 33860640 | DOI: 10.1111/febs.15876
Cancers
2021 Apr 03
Sengal, AT;Smith, D;Rogers, R;Snell, CE;Williams, ED;Pollock, PM;
PMID: 33916719 | DOI: 10.3390/cancers13071703
Oncotarget.
2018 Jul 20
Bar I, Merhi A, Larbanoix L, Constant M, Haussy S, Laurent S, Canon JL, Delrée P.
PMID: 30112110 | DOI: 10.18632/oncotarget.25738
The casein kinase 1 delta (CSNK1D) is a conserved serine/threonine protein kinase that regulates diverse cellular processes including cell cycle progression, circadian rhythm, and neurite outgrowth. Aberrant expression of CSNK1D is described in several cancer types including breast cancer, where it is amplified in about 30% of triple negative breast (TNBC). Here, we have investigated the function of CSNK1D in triple negative cancer cell migration and metastasis. By using immunohistochemistry and in situ hybridization, we found that CNSK1D is highly expressed in primary tumor cells and in tumor cells invading lymphatic nodes compared to non-metastatic tumors. In vitro, knock-down of CSNK1D expression with specific shRNAs in the breast cancer cell line MDA-MB-231 markedly inhibited cancer cell proliferation, invasion and migration and affected the expression of the tight junction proteins claudin 1, occludin and the junction adhesion molecule A. In vivo, the inactivation of CSNK1D reduced lung metastasis in MDA-MB-231 breast cancer xenografts. Altogether, our results indicate that the downregulation of CSNK1D expression inhibits the proliferation and reduces the migration and the metastasis of breast cancer cells. As numerous inhibitors of CSNK1D are currently under development, this might represent an attractive therapeutic target for the treatment of TNBC.
Sci Rep. 2015 Mar 5;5:8765.
Gökmen-Polar Y, Vladislav IT, Neelamraju Y, Janga SC, Badve S.
PMID: 25739705 | DOI: 10.1038/srep08765.
Nat Med. 2015 Feb 23.
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T.
PMID: 25706875 | DOI: 10.1038/nm.3802.
Nat Med.
2015 Mar 01
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T.
PMID: 25706875 | DOI: 10.1038/nm.3802
Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.
Am J Transl Res
2018 Feb 15
Qu L, Jin M, Yang L, Sun C, Wang P, Li Y, Tian L, Liu M, Sun Y.
PMID: - | DOI: -
Abstract: Long noncoding RNA HOXA11 antisense RNA (HOXA11-AS) is involved in tumorigenesis and development of some human cancers. However, the role of HOXA11-AS in human laryngeal squamous cell cancer (LSCC) is yet
unclear. In this study, we firstly investigated the expression of HOXA11-AS in LSCC. Microarray and qRT-PCR showed that the level of HOXA11-AS was significantly higher in LSCC than that in the corresponding adjacent non-neoplastic
tissues. ISH revealed that HOXA11-AS was strongly expressed in the nucleus and closely related to the T grade, neck nodal metastasis, and clinical stage. Patients with T3-4 grade, neck nodal metastasis, or advanced clinical
stage presented a high HOXA11-AS expression. Kaplan-Meier analysis showed that high HOXA11-AS expression could predict a poor prognosis in LSCC patients. Furthermore, HOXA11-AS knockdown significantly inhibited the
growth, migration, and invasion of LSCC cells. Taken together, the current data indicated that HOXA11-AS plays an oncogenic role in the cellular processes of LSCC and serve as a novel marker and a potential therapeutic target in
LSCC patients.
Pathol Int.
2018 Jul 24
Nakajima T, Uehara T, Kobayashi Y, Kinugawa Y, Yamanoi K, Maruyama Y, Suga T, Ota H.
PMID: 30043418 | DOI: 10.1111/pin.12707
LGR5 is expressed in various tumors and has been identified as a putative intestinal stem cell marker. Here we investigated LGR5 expression in colorectal neuroendocrine neoplasms and analyzed the correlation with pathological characteristics. We evaluated the clinicopathological features of 8 neuroendocrine tumor (NET) grade 1 (NET G1), 4 NET Grade 2 (NET G2), and 8 NET Grade 3 (NET G3; also termed neuroendocrine carcinoma, or NEC) cases. We examined LGR5 expression using an RNAscope, a newly developed RNA in situ hybridization technique, with a tissue microarray of the neuroendocrine neoplasm samples. LGR5 staining in individual tumor cells was semi-quantitatively scored using an H-score scale. We also performed a combination of LGR5 RNA in situ hybridization and synaptophysin immunohistochemistry. All cases contained tumor cells with some LGR5-positive dots. For all cases, H-scores showed a positive correlation with nuclear beta-catenin expression. In the NEC group, there was a strong positive correlation between H-score and beta-catenin expression. Our findings suggest that LGR5 may serve as a stem cell marker in NEC, as is the case in colon adenocarcinoma. The positive correlation between H-score and beta-catenin expression suggests that LGR5 expression might be affected by beta-catenin expression in neuroendocrine neoplasms and especially in NEC.
Cancers
2020 Apr 17
Aldaregia J, Errarte P, Olazagoitia-Garmendia A, Gimeno M, Uriz JJ, Gershon TR, Garcia I, Matheu A
PMID: 32316671 | DOI: 10.3390/cancers12040997
Nature
2023 Jun 01
Nwosu, ZC;Ward, MH;Sajjakulnukit, P;Poudel, P;Ragulan, C;Kasperek, S;Radyk, M;Sutton, D;Menjivar, RE;Andren, A;Apiz-Saab, JJ;Tolstyka, Z;Brown, K;Lee, HJ;Dzierozynski, LN;He, X;Ps, H;Ugras, J;Nyamundanda, G;Zhang, L;Halbrook, CJ;Carpenter, ES;Shi, J;Shriver, LP;Patti, GJ;Muir, A;Pasca di Magliano, M;Sadanandam, A;Lyssiotis, CA;
PMID: 37198494 | DOI: 10.1038/s41586-023-06073-w
The Journal of clinical investigation
2023 May 11
Pilat, JM;Brown, RE;Chen, Z;Berle, NJ;Othon, AP;Washington, M;Anant, SA;Kurokawa, S;Ng, VH;Thompson, JJ;Jacobse, J;Goettel, JA;Lee, E;Choksi, YA;Lau, KS;Short, SP;Williams, CS;
PMID: 37166989 | DOI: 10.1172/JCI165988
NPJ breast cancer
2023 Mar 02
Gibson, SV;Tomas Bort, E;Rodríguez-Fernández, L;Allen, MD;Gomm, JJ;Goulding, I;Auf dem Keller, U;Agnoletto, A;Brisken, C;Peck, B;Cameron, AJ;Marshall, JF;Jones, JL;Carter, EP;Grose, RP;
PMID: 36864079 | DOI: 10.1038/s41523-023-00513-6
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com