Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (244) Apply RNAscope 2.0 Assay filter
  • RNAscope (177) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (134) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (90) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (88) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (80) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (52) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 VS Assay (37) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (35) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Duplex (33) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (31) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • TBD (24) Apply TBD filter
  • Basescope (19) Apply Basescope filter
  • RNAscope Multiplex Fluorescent v2 (10) Apply RNAscope Multiplex Fluorescent v2 filter
  • miRNAscope (7) Apply miRNAscope filter
  • RNAscope HiPlex v2 assay (5) Apply RNAscope HiPlex v2 assay filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD duplex reagent kit (4) Apply RNAscope 2.5 HD duplex reagent kit filter
  • DNAscope HD Duplex Reagent Kit (3) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope ISH Probe High Risk HPV (3) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Reagent Kit (2) Apply RNAscope 2.5 HD Reagent Kit filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • (-) Remove Cancer filter Cancer (1368)
  • HPV (158) Apply HPV filter
  • Infectious Disease (120) Apply Infectious Disease filter
  • lncRNA (67) Apply lncRNA filter
  • Immunotherapy (52) Apply Immunotherapy filter
  • Neuroscience (42) Apply Neuroscience filter
  • Stem Cells (40) Apply Stem Cells filter
  • Inflammation (31) Apply Inflammation filter
  • LncRNAs (16) Apply LncRNAs filter
  • Tumor microenvironment (6) Apply Tumor microenvironment filter
  • circRNAs (5) Apply circRNAs filter
  • Stem cell (5) Apply Stem cell filter
  • CGT (4) Apply CGT filter
  • Development (4) Apply Development filter
  • miRNAs (4) Apply miRNAs filter
  • therapeutics (4) Apply therapeutics filter
  • intratumoral microbiota (3) Apply intratumoral microbiota filter
  • Other: Methods (3) Apply Other: Methods filter
  • Pain (3) Apply Pain filter
  • Cell Therapy (2) Apply Cell Therapy filter
  • circRNA (2) Apply circRNA filter
  • Developmental (2) Apply Developmental filter
  • Engineered T cells (2) Apply Engineered T cells filter
  • Epstein-Barr (2) Apply Epstein-Barr filter
  • Gene Therapy (2) Apply Gene Therapy filter
  • HIV (2) Apply HIV filter
  • Immuno-Oncology (2) Apply Immuno-Oncology filter
  • Immunotherapy: NK-Cell Therapy (2) Apply Immunotherapy: NK-Cell Therapy filter
  • Liver (2) Apply Liver filter
  • Lung (2) Apply Lung filter
  • noncoding RNA (2) Apply noncoding RNA filter
  • Radiotherapy (2) Apply Radiotherapy filter
  • Antimicrobial Chemotherapy (1) Apply Antimicrobial Chemotherapy filter
  • Bone (1) Apply Bone filter
  • Canine Cancer (1) Apply Canine Cancer filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Diet (1) Apply Diet filter
  • Endocrinology (1) Apply Endocrinology filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Cutavirus (1) Apply Infectious Disease: Cutavirus filter
  • Infectiouse Disease: EBV (1) Apply Infectiouse Disease: EBV filter
  • IO (1) Apply IO filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Reproductive Biology (1) Apply Other: Reproductive Biology filter
  • Single Cell Sequencing (1) Apply Single Cell Sequencing filter
  • Skin (1) Apply Skin filter
  • Tumor Microbiome (1) Apply Tumor Microbiome filter
  • Virotherapy (1) Apply Virotherapy filter

Category

  • Publications (1368) Apply Publications filter
Emerging role of lncRNA ELDR in development and cancer

The FEBS journal

2021 Apr 15

Sur, S;Ray, RB;
PMID: 33860640 | DOI: 10.1111/febs.15876

Whole-genome sequencing and transcriptome analysis revealed more than 90% of the human genome transcribes noncoding RNAs including lncRNAs. From the beginning of the 21st century, lncRNAs have gained widespread attention as a new layer of regulation in biological processes. lncRNAs are > 200 nucleotides in size, transcribed by RNA polymerase II, and share many similarities with mRNAs. lncRNA interacts with DNA, RNA, protein, and miRNAs, thereby regulating many biological processes. In this review, we have focused mainly on LINC01156 [also known as the EGFR long non-coding downstream RNA (ELDR) or Fabl] and its biological importance. ELDR is a newly identified lncRNA and first reported in a mouse model, but it has a human homolog. The human ELDR gene is closely localized downstream of epidermal growth factor receptor (EGFR) gene at chromosome 7 on the opposite strand. ELDR is highly expressed in neuronal stem cells and associated with neuronal differentiation and mouse brain development. ELDR is upregulated in head and neck cancer, suggesting its role as an oncogene and its importance in prognosis and therapy. Publicly available RNA-seq data further support its oncogenic potential in different cancers. Here, we summarize all the aspects of ELDR in development and cancer, highlighting its future perspectives in the context of mechanism.
Fibroblast Growth Factor Receptor 2 Isoforms Detected via Novel RNA ISH as Predictive Biomarkers for Progestin Therapy in Atypical Hyperplasia and Low-Grade Endometrial Cancer

Cancers

2021 Apr 03

Sengal, AT;Smith, D;Rogers, R;Snell, CE;Williams, ED;Pollock, PM;
PMID: 33916719 | DOI: 10.3390/cancers13071703

Women with atypical hyperplasia (AH) or well-differentiated early-stage endometrioid endometrial carcinoma (EEC) who wish to retain fertility and/or with comorbidities precluding surgery, are treated with progestin. Clinically approved predictive biomarkers for progestin therapy remain an unmet need. The objectives of this study were to document the overall response rate (ORR) of levonorgestrel intrauterine device (LNG-IUD) treatment, and determine the association of FGFR2b and FGFR2c expression with treatment outcome. BaseScope RNA ISH assay was utilized to detect expression of FGFR2b and FGFR2c mRNA in the diagnostic biopsies of 89 women (40 AH and 49 EEC) treated with LNG-IUD. Detailed clinical follow-up was available for 69 women which revealed an overall response rate (ORR) of 44% (30/69) with a higher ORR seen in AH (64%) compared to EEC (23%). The recurrence rate in women who initially responded to LNG-IUD was 10/30 (33.3%). RNA ISH was successful in 72 patients and showed FGFR2c expression in 12/72 (16.7%) samples. In the 59 women with detailed clinical follow-up and RNA-ISH data, women with tumours expressing FGFR2c were 5-times more likely to have treatment failure in both univariable (HR 5.08, p < 0.0001) and multivariable (HR 4.5, p < 0.002) Cox regression analyses. In conclusion, FGFR2c expression appears to be strongly associated with progestin treatment failure, albeit the ORR is lower in this cohort than previously reported. Future work to validate these findings in an independent multi-institutional cohort is needed.
Silencing of casein kinase 1 delta reduces migration and metastasis of triple negative breast cancer cells.

Oncotarget.

2018 Jul 20

Bar I, Merhi A, Larbanoix L, Constant M, Haussy S, Laurent S, Canon JL, Delrée P.
PMID: 30112110 | DOI: 10.18632/oncotarget.25738

The casein kinase 1 delta (CSNK1D) is a conserved serine/threonine protein kinase that regulates diverse cellular processes including cell cycle progression, circadian rhythm, and neurite outgrowth. Aberrant expression of CSNK1D is described in several cancer types including breast cancer, where it is amplified in about 30% of triple negative breast (TNBC). Here, we have investigated the function of CSNK1D in triple negative cancer cell migration and metastasis. By using immunohistochemistry and in situ hybridization, we found that CNSK1D is highly expressed in primary tumor cells and in tumor cells invading lymphatic nodes compared to non-metastatic tumors. In vitro, knock-down of CSNK1D expression with specific shRNAs in the breast cancer cell line MDA-MB-231 markedly inhibited cancer cell proliferation, invasion and migration and affected the expression of the tight junction proteins claudin 1, occludin and the junction adhesion molecule A. In vivo, the inactivation of CSNK1D reduced lung metastasis in MDA-MB-231 breast cancer xenografts. Altogether, our results indicate that the downregulation of CSNK1D expression inhibits the proliferation and reduces the migration and the metastasis of breast cancer cells. As numerous inhibitors of CSNK1D are currently under development, this might represent an attractive therapeutic target for the treatment of TNBC.

Prognostic Impact of HOTAIR Expression is Restricted to ER-Negative Breast Cancers

Sci Rep. 2015 Mar 5;5:8765.

Gökmen-Polar Y, Vladislav IT, Neelamraju Y, Janga SC, Badve S.
PMID: 25739705 | DOI: 10.1038/srep08765.

Expression of HOX transcript antisense intergenic RNA (HOTAIR), a large intergenic noncoding RNA (lincRNA), has been described as a metastases-associated lincRNA in various cancers including breast, liver and colon cancer cancers. We sought to determine if expression of HOTAIR could be used as a surrogate for assessing nodal metastases and evaluated RNA in situ hybridization (RNA-ISH) assay in a tissue microarray constructed from 133 breast cancer patients. The prognostic value of HOTAIR was further validated in large cohorts using The Cancer Genome Atlas (TCGA) breast cancer subjects. RNA-ISH analysis was successful in 94 cases (17% cases scored 0, 32.9% scored 1, 30.8% scored 2, and 19.1% scored 3). The expression of HOTAIR did not correlate with nodal metastasis regardless of the scoring intensity or with other study parameters (age, tumor size and grade, expression status). Further analysis of TCGA dataset showed that HOTAIR expression was lower in ductal carcinomas but higher in ER-negative tumors. Overexpression of HOTAIR was not associated with nodal metastases or prognosis in ER-positive patients. Its function as a poor prognostic indicator in ER-negative patients was restricted to node-positive patients. HOTAIR appears to be a marker for lymphatic metastases rather than hematogenous metastases in ER-negative patients.
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.

Nat Med. 2015 Feb 23.

Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T.
PMID: 25706875 | DOI: 10.1038/nm.3802.

Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.

Nat Med.

2015 Mar 01

Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T.
PMID: 25706875 | DOI: 10.1038/nm.3802

Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.

Expression of long non-coding RNA HOXA11-AS is correlated with progression of laryngeal squamous cell carcinoma

Am J Transl Res

2018 Feb 15

Qu L, Jin M, Yang L, Sun C, Wang P, Li Y, Tian L, Liu M, Sun Y.
PMID: - | DOI: -

Abstract: Long noncoding RNA HOXA11 antisense RNA (HOXA11-AS) is involved in tumorigenesis and development of some human cancers. However, the role of HOXA11-AS in human laryngeal squamous cell cancer (LSCC) is yet
unclear. In this study, we firstly investigated the expression of HOXA11-AS in LSCC. Microarray and qRT-PCR showed that the level of HOXA11-AS was significantly higher in LSCC than that in the corresponding adjacent non-neoplastic
tissues. ISH revealed that HOXA11-AS was strongly expressed in the nucleus and closely related to the T grade, neck nodal metastasis, and clinical stage. Patients with T3-4 grade, neck nodal metastasis, or advanced clinical
stage presented a high HOXA11-AS expression. Kaplan-Meier analysis showed that high HOXA11-AS expression could predict a poor prognosis in LSCC patients. Furthermore, HOXA11-AS knockdown significantly inhibited the
growth, migration, and invasion of LSCC cells. Taken together, the current data indicated that HOXA11-AS plays an oncogenic role in the cellular processes of LSCC and serve as a novel marker and a potential therapeutic target in
LSCC patients.

Leucine‐rich repeat‐containing G‐protein‐coupled receptor 5 expression and clinicopathological features of colorectal neuroendocrine neoplasms

Pathol Int.

2018 Jul 24

Nakajima T, Uehara T, Kobayashi Y, Kinugawa Y, Yamanoi K, Maruyama Y, Suga T, Ota H.
PMID: 30043418 | DOI: 10.1111/pin.12707

LGR5 is expressed in various tumors and has been identified as a putative intestinal stem cell marker. Here we investigated LGR5 expression in colorectal neuroendocrine neoplasms and analyzed the correlation with pathological characteristics. We evaluated the clinicopathological features of 8 neuroendocrine tumor (NET) grade 1 (NET G1), 4 NET Grade 2 (NET G2), and 8 NET Grade 3 (NET G3; also termed neuroendocrine carcinoma, or NEC) cases. We examined LGR5 expression using an RNAscope, a newly developed RNA in situ hybridization technique, with a tissue microarray of the neuroendocrine neoplasm samples. LGR5 staining in individual tumor cells was semi-quantitatively scored using an H-score scale. We also performed a combination of LGR5 RNA in situ hybridization and synaptophysin immunohistochemistry. All cases contained tumor cells with some LGR5-positive dots. For all cases, H-scores showed a positive correlation with nuclear beta-catenin expression. In the NEC group, there was a strong positive correlation between H-score and beta-catenin expression. Our findings suggest that LGR5 may serve as a stem cell marker in NEC, as is the case in colon adenocarcinoma. The positive correlation between H-score and beta-catenin expression suggests that LGR5 expression might be affected by beta-catenin expression in neuroendocrine neoplasms and especially in NEC.

Erbb4 Is Required for Cerebellar Developmentand Malignant Phenotype of Medulloblastoma

Cancers

2020 Apr 17

Aldaregia J, Errarte P, Olazagoitia-Garmendia A, Gimeno M, Uriz JJ, Gershon TR, Garcia I, Matheu A
PMID: 32316671 | DOI: 10.3390/cancers12040997

Medulloblastoma is the most common and malignant pediatric brain tumor in childhood. It originates from dysregulation of cerebellar development, due to an excessive proliferation of cerebellar granule neuron precursor cells (CGNPs). The underlying molecular mechanisms, except for the role of SHH and WNT pathways, remain largely unknown. ERBB4 is a tyrosine kinase receptor whose activity in cancer is tissue dependent. In this study, we characterized the role of ERBB4 during cerebellum development and medulloblastoma progression paying particular interests to its role in CGNPs and medulloblastoma stem cells (MBSCs). Our results show that ERBB4 is expressed in the CGNPs during cerebellum development where it plays a critical role in migration, apoptosis and differentiation. Similarly, it is enriched in the population of MBSCs, where also controls those critical processes, as well as self-renewal and tumor initiation for medulloblastoma progression. These results are translated to clinical samples where high levels of ERBB4 correlate with poor outcome in Group 4 and all medulloblastomas groups. Transcriptomic analysis identified critical processes and pathways altered in cells with knock-down of ERBB4. These results highlight the impact and underlying mechanisms of ERBB4 in critical processes during cerebellum development and medulloblastoma.
Uridine-derived ribose fuels glucose-restricted pancreatic cancer

Nature

2023 Jun 01

Nwosu, ZC;Ward, MH;Sajjakulnukit, P;Poudel, P;Ragulan, C;Kasperek, S;Radyk, M;Sutton, D;Menjivar, RE;Andren, A;Apiz-Saab, JJ;Tolstyka, Z;Brown, K;Lee, HJ;Dzierozynski, LN;He, X;Ps, H;Ugras, J;Nyamundanda, G;Zhang, L;Halbrook, CJ;Carpenter, ES;Shi, J;Shriver, LP;Patti, GJ;Muir, A;Pasca di Magliano, M;Sadanandam, A;Lyssiotis, CA;
PMID: 37198494 | DOI: 10.1038/s41586-023-06073-w

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.
SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions

The Journal of clinical investigation

2023 May 11

Pilat, JM;Brown, RE;Chen, Z;Berle, NJ;Othon, AP;Washington, M;Anant, SA;Kurokawa, S;Ng, VH;Thompson, JJ;Jacobse, J;Goettel, JA;Lee, E;Choksi, YA;Lau, KS;Short, SP;Williams, CS;
PMID: 37166989 | DOI: 10.1172/JCI165988

Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic colorectal carcinogenesis. In human scRNA-seq datasets, we discovered that SELENOP expression rises as normal colon stem cells transform into adenomas that progress into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involves conditional, intestinal epithelial-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as CRC and noncancer cell lines. Selenop KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining SELENOP's mechanism of action, we mapped protein-protein interactions between SELENOP and the WNT co-receptor low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Lastly, we confirmed that SELENOP:LRP5/6 interactions contributed to SELENOP's effects on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.
TGFβ-mediated MMP13 secretion drives myoepithelial cell dependent breast cancer progression

NPJ breast cancer

2023 Mar 02

Gibson, SV;Tomas Bort, E;Rodríguez-Fernández, L;Allen, MD;Gomm, JJ;Goulding, I;Auf dem Keller, U;Agnoletto, A;Brisken, C;Peck, B;Cameron, AJ;Marshall, JF;Jones, JL;Carter, EP;Grose, RP;
PMID: 36864079 | DOI: 10.1038/s41523-023-00513-6

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer. Virtually all women with DCIS are treated, despite evidence suggesting up to half would remain with stable, non-threatening, disease. Overtreatment thus presents a pressing issue in DCIS management. To understand the role of the normally tumour suppressive myoepithelial cell in disease progression we present a 3D in vitro model incorporating both luminal and myoepithelial cells in physiomimetic conditions. We demonstrate that DCIS-associated myoepithelial cells promote striking myoepithelial-led invasion of luminal cells, mediated by the collagenase MMP13 through a non-canonical TGFβ - EP300 pathway. In vivo, MMP13 expression is associated with stromal invasion in a murine model of DCIS progression and is elevated in myoepithelial cells of clinical high-grade DCIS cases. Our data identify a key role for myoepithelial-derived MMP13 in facilitating DCIS progression and point the way towards a robust marker for risk stratification in DCIS patients.

Pages

  • « first
  • ‹ previous
  • …
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?