Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (244) Apply RNAscope 2.0 Assay filter
  • RNAscope (177) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (134) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (90) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (88) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (80) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (52) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 VS Assay (37) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (35) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Duplex (33) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (31) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • TBD (24) Apply TBD filter
  • Basescope (19) Apply Basescope filter
  • RNAscope Multiplex Fluorescent v2 (10) Apply RNAscope Multiplex Fluorescent v2 filter
  • miRNAscope (7) Apply miRNAscope filter
  • RNAscope HiPlex v2 assay (5) Apply RNAscope HiPlex v2 assay filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD duplex reagent kit (4) Apply RNAscope 2.5 HD duplex reagent kit filter
  • DNAscope HD Duplex Reagent Kit (3) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope ISH Probe High Risk HPV (3) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Reagent Kit (2) Apply RNAscope 2.5 HD Reagent Kit filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • (-) Remove Cancer filter Cancer (1368)
  • HPV (158) Apply HPV filter
  • Infectious Disease (120) Apply Infectious Disease filter
  • lncRNA (67) Apply lncRNA filter
  • Immunotherapy (52) Apply Immunotherapy filter
  • Neuroscience (42) Apply Neuroscience filter
  • Stem Cells (40) Apply Stem Cells filter
  • Inflammation (31) Apply Inflammation filter
  • LncRNAs (16) Apply LncRNAs filter
  • Tumor microenvironment (6) Apply Tumor microenvironment filter
  • circRNAs (5) Apply circRNAs filter
  • Stem cell (5) Apply Stem cell filter
  • CGT (4) Apply CGT filter
  • Development (4) Apply Development filter
  • miRNAs (4) Apply miRNAs filter
  • therapeutics (4) Apply therapeutics filter
  • intratumoral microbiota (3) Apply intratumoral microbiota filter
  • Other: Methods (3) Apply Other: Methods filter
  • Pain (3) Apply Pain filter
  • Cell Therapy (2) Apply Cell Therapy filter
  • circRNA (2) Apply circRNA filter
  • Developmental (2) Apply Developmental filter
  • Engineered T cells (2) Apply Engineered T cells filter
  • Epstein-Barr (2) Apply Epstein-Barr filter
  • Gene Therapy (2) Apply Gene Therapy filter
  • HIV (2) Apply HIV filter
  • Immuno-Oncology (2) Apply Immuno-Oncology filter
  • Immunotherapy: NK-Cell Therapy (2) Apply Immunotherapy: NK-Cell Therapy filter
  • Liver (2) Apply Liver filter
  • Lung (2) Apply Lung filter
  • noncoding RNA (2) Apply noncoding RNA filter
  • Radiotherapy (2) Apply Radiotherapy filter
  • Antimicrobial Chemotherapy (1) Apply Antimicrobial Chemotherapy filter
  • Bone (1) Apply Bone filter
  • Canine Cancer (1) Apply Canine Cancer filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Diet (1) Apply Diet filter
  • Endocrinology (1) Apply Endocrinology filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Cutavirus (1) Apply Infectious Disease: Cutavirus filter
  • Infectiouse Disease: EBV (1) Apply Infectiouse Disease: EBV filter
  • IO (1) Apply IO filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Reproductive Biology (1) Apply Other: Reproductive Biology filter
  • Single Cell Sequencing (1) Apply Single Cell Sequencing filter
  • Skin (1) Apply Skin filter
  • Tumor Microbiome (1) Apply Tumor Microbiome filter
  • Virotherapy (1) Apply Virotherapy filter

Category

  • Publications (1368) Apply Publications filter
IN SITU DETECTION OF CRTC-MAML2 TRANSLOCATION EXPRESSION IN MUCOEPIDERMOID CARCINOMA

Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

2021 Jul 01

Amoura, E;Hunter, K;Bingle, C;Bingle, L;
| DOI: 10.1016/j.oooo.2021.03.040

Background The heterogeneity of salivary gland neoplasms, within and between histologic types, presents a major diagnostic challenge. Mucoepidermoid carcinoma (MEC), the most common salivary gland cancer in adults, children, and adolescents, is associated with the presence of a novel CRTC1-MAML2 fusion gene. The translocation can be detected by fluorescence in situ hybridization or reverse transcription polymerase chain reaction but without information regarding transcript level, identification of the cell type(s) harboring the translocation and histologic architecture is not preserved. This study describes, for the first time, a novel in situ chromogenic assay, BaseScope, to detect CRTC1-MAML2 translocation expression. Objective Design a novel BaseScope probe targeting the novel exon-exon junction in the CRTC1-MAML2 fusion transcript, determine expression levels of the transcript, and identify specific cell types harboring the translocation. Methods Formalin-fixed paraffin-embedded tissues and known fusion-positive and -negative human MEC cells were subjected to the assay. Results The CRTC1-MAML2 RNA transcript was detected in known fusion-positive cells but not in fusion-negative cells. In MEC tissues distinct fusion events, in the form of punctate red dots, were detected in all tumor grades and all cell types. Interestingly, the translocation was specifically identified in tumor cells that had direct contact with tumor stroma or nerve invasion. No positive staining was seen in normal tissue or surrounding stroma and no unique morphological features were noted in negative cases. Conclusions The BaseScope assay accurately detects the CRTC1-MAML2 fusion translocation and thus provides an alternative chromogenic technique, for easy use in routine clinical labs, to aid accurate diagnosis of MEC.
Detection of Human Papillomavirus in Non-Small Cell Carcinoma of the Lung

Human Pathology (2015)

Chang SY, Keeney M, Law M, Donovan J, Aubry MC, Garcia J.

High-risk human papillomavirus (hrHPV) is an etiologic agent in squamous cell carcinoma (SqCC) arising in the oropharynx and cervix, and a proven prognostic factor in oropharyngeal SqCC. Many studies have found HPV in non-small cell lung carcinoma (NSCLC). Recent studies advocate the detection of mRNA transcripts of E6/E7 as more reliable evidence of transcriptively active HPV in tumor cells. The clinical significance of finding HPV remains unclear in NSCLC. This study sought to determine the prevalence of biologically active HPV infection in NSCLC comparing different methodologies. Surgical pathology material from resected primary lung adenocarcinoma (ADC; n = 100) and SqCC (n = 96) were retrieved to construct tissue microarrays. In-situ hybridization (ISH) for hrHPV DNA (DNA-ISH), hrHPV E6/E7 RNA (RNA-ISH), and p16 immunohistochemistry (IHC) were performed. Cases of oropharyngeal SqCC with known HPV infection were used as positive controls. Expression of p16 was scored as positive if at least 70% of tumor cells showed diffuse and strong nuclear and cytoplasmic staining. Punctate nuclear hybridization signals by DNA-ISH in the malignant cells defined an HPV-positive carcinoma. Of the 196 patients (range 33-87 years; 108 men), p16 was positive in 19 ADC and 9 SqCC, but HPV DNA-ISH and RNA-ISH were negative in all cases. Our study did not detect HPV infection by DNA-ISH or RNA-ISH in any cases of primary NSCLC despite positive p16 expression in a portion of ADC and SqCC. p16 should therefore not be used as a surrogate marker for HPV infection in NSCLC.
Clinical and prognostic value of MET gene copy number gain and chromosome 7 polysomy in primary colorectal cancer patients.

Tumour Biol. 2015 Jul 10.

Seo AN, Park KU, Choe G, Kim WH, Kim DW, Kang SB, Lee HS.
PMID: 26159851

We aimed to explore the clinical and prognostic influence of numeric alterations of MET gene copy number (GCN) and chromosome 7 (CEP7) CN in colorectal cancer (CRC) patients. MET GCN and CEP7 CN were investigated in tissue arrayed tumors from 170 CRC patients using silver in situ hybridization (SISH). MET GCN gain was defined as ≥4 copies of MET, and CEP7 polysomy was prespecified as ≥3 copies of CEP7. Additionally, MET messenger RNA (mRNA) transcription was evaluated using mRNA ISH and compared with MET GCN. MET GCN gain was observed in 14.7 % (25/170), which correlated with advanced stage (P = 0.037), presence of distant metastasis (P = 0.006), and short overall survival (OS) (P = 0.009). In contrast, CEP7 polysomy was found in 6.5 % (11/170), which was related to tumor location in the left colon (P = 0.027) and poor OS (P = 0.029). MET GCN positively correlated with CEP7 CN (R = 0.659, P < 0.001) and mRNA transcription (R = 0.239, P = 0.002). Of note, MET GCN gain and CEP7 polysomy were also associated with poor OS (P = 0.016 and P < 0.001, respectively) in stage II/III CRC patients (n = 123). In multivariate analysis, CEP7 polysomy was an independent prognostic factor for poor OS in all patients (P = 0.009; hazard ratio [HR], 2.220; 95 % confidence interval [CI], 1.233-3.997) and in stage II/III CRC patients (P < 0.001; HR, 20.781; 95 % CI, 4.600-93.882). MET GCN gain and CEP7 polysomy could predict a poor outcome in CRC patients, especially CEP7 polysomy has the most powerful prognostic impact in stage II/III CRC patients
Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

PLoS One. 2015 May 21;10(5):e0127300.

Jang BG, Lee BL, Kim WH.
PMID: 26015511 | DOI: clincanres.3357.2014.

Gastric intestinal metaplasia (IM) is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC) marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE)-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.
Prognostic significance of p62/SQSTM1 subcellular localization and LC3B in oral squamous cell carcinoma

Br J Cancer. 2014 Jul 1.

Liu JL, Chen FF, Lung J, Lo CH, Lee FH, Lu YC, Hung CH.
PMID: 24983366 | DOI: 10.1038/bjc.2014.355.

Background:Autophagy is a programmed cell survival mechanism that has a key role in both physiologic and pathologic conditions. The relationship between autophagy and cancer is complex because autophagy can act as either a tumour suppressor or as a tumour promoter. The role of autophagy in oral squamous cell carcinoma (OSCC) is controversial. Several studies have claimed that either a high or low expression of autophagy-related proteins was associated with poor prognosis of OSCCs. The aims of the study were to compare autophagy in OSCCs, verrucous hyperplasias, and normal oral mucosas, and to inspect the prognostic role of autophagy in OSCCs.Methods:We used the autophagosome marker, LC3B, and autophagy flux marker, p62/SQSTM1 (p62), by using immunohistochemistry, and examined p62 mRNA by RNA in situ hybridization, to evaluate autophagy in 195 OSCCs, 47 verrucous hyperplasias, and 37 normal oral mucosas. The prognostic roles of LC3B and p62 protein expressions in OSCCs were investigated.Results:We discovered that the normal oral mucosa exhibited limited LC3B punctae and weak cytoplasmic p62 staining, whereas the OSCCs exhibited a marked increase in LC3B punctae and cytoplasmic p62 expression. The expression pattern of LC3B and cytoplasmic p62 of the verrucous hyperplasias were between normal oral mucosas and OSCCs. The normal oral mucosas, verrucous hyperplasias, and OSCCs presented no differences in nuclear p62 expression and the p62 mRNA level. p62 mRNA expression was elevated in a minority of cases. High p62 mRNA expression was associated with high p62 protein expression in the cytoplasm. Increased LC3B punctae, high cytoplasmic p62, and low nuclear p62 expressions in OSCCs were associated with aggressive clinicopathologic features and unfavourable prognosis. In addition, low nuclear p62 expression was an independent prognostic factor for overall and disease-specific survival rates. Furthermore, we disclosed that high cytoplasmic p62 expression accompanied with either a low or high LC3B expression, which indicated autophagy impairment under basal or activated autophagic activity, was associated with aggressive behaviour in advanced OSCCs.Conclusions:We suggested that autophagy was altered during cancer initiation and progression. Autophagy impairment contributed to cancer progression in advanced OSCCs.British Journal of Cancer advance online publication, 1 July 2014; doi:10.1038/bjc.2014.355 www.bjcancer.com.
A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer.

Clin Cancer Res. Feb 1; 20(3):711–723.

Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, Lester J, Beach JA, Tighiouart M, Walts AE, Karlan BY, Orsulic S (2014).
PMID: 24218511 | DOI: 10.1158/1078-0432.CCR-13-1256.

PURPOSE: To elucidate molecular pathways contributing to metastatic cancer progression and poor clinical outcome in serous ovarian cancer. EXPERIMENTAL DESIGN: Poor survival signatures from three different serous ovarian cancer datasets were compared and a common set of genes was identified. The predictive value of this gene signature was validated in independent datasets. The expression of the signature genes was evaluated in primary, metastatic, and/or recurrent cancers using quantitative PCR and in situ hybridization. Alterations in gene expression by TGF-β1 and functional consequences of loss of COL11A1 were evaluated using pharmacologic and knockdown approaches, respectively. RESULTS: We identified and validated a 10-gene signature (AEBP1, COL11A1, COL5A1, COL6A2, LOX, POSTN, SNAI2, THBS2, TIMP3, and VCAN) that is associated with poor overall survival (OS) in patients with high-grade serous ovarian cancer. The signature genes encode extracellular matrix proteins involved in collagen remodeling. Expression of the signature genes is regulated by TGF-β1 signaling and is enriched in metastases in comparison with primary ovarian tumors. We demonstrate that levels of COL11A1, one of the signature genes, continuously increase during ovarian cancer disease progression, with the highest expression in recurrent metastases. Knockdown of COL11A1 decreases in vitro cell migration, invasion, and tumor progression in mice. CONCLUSION: Our findings suggest that collagen-remodeling genes regulated by TGF-β1 signaling promote metastasis and contribute to poor OS in patients with serous ovarian cancer. Our 10-gene signature has both predictive value and biologic relevance and thus may be useful as a therapeutic target.
Programmed death ligand-1 expression in non-small cell lung cancer.

Lab Invest. 2014 Jan;94(1):107-16.

Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L, Rimm DL (2014).
PMID: 24217091doi

Recent strategies targeting the interaction of the programmed cell death ligand-1 (PD-L1, B7-H1, CD274) with its receptor, PD-1, resulted in promising activity in early phase clinical trials. In this study, we used various antibodies and in situ mRNA hybridization to measure PD-L1 in non-small cell lung cancer (NSCLC) using a quantitative fluorescence (QIF) approach to determine the frequency of expression and prognostic value in two independent populations. A control tissue microarray (TMA) was constructed using PD-L1-transfected cells, normal human placenta and known PD-L1-positive NSCLC cases. Only one of four antibodies against PD-L1 (5H1) validated for specificity on this TMA. In situ PD-L1 mRNA using the RNAscope method was similarly validated. Two cohorts of NSCLC cases in TMAs including 340 cases from hospitals in Greece and 204 cases from Yale University were assessed. Tumors showed PD-L1 protein expression in 36% (Greek) and 25% (Yale) of the cases. PD-L1 expression was significantly associated with tumor-infiltrating lymphocytes in both cohorts. Patients with PD-L1 (both protein and mRNA) expression above the detection threshold showed statistically significant better outcome in both series (log-rank P=0.036 and P=0.027). Multivariate analysis showed that PD-L1 expression was significantly associated with better outcome independent of histology. Measurement of PD-L1 requires specific conditions and some commercial antibodies show lack of specificity. Expression of PD-L1 protein or mRNA is associated with better outcome. Further studies are required to determine the value of this marker in prognosis and prediction of response to treatments targeting this pathway.
Detection and significance of human papillomavirus, CDKN2A(p16) and CDKN1A(p21) expression in squamous cell carcinoma of the larynx.

Mod Pathol. 2013 Feb;26(2):223-31.

Chernock RD, Wang X, Gao G, Lewis JS Jr, Zhang Q, Thorstad WL, El-Mofty SK.
PMID: 22996374 | DOI: 10.1038/modpathol.2012.159.

Although a strong etiologic relationship between human papillomavirus (HPV) and a majority of oropharyngeal squamous cell carcinomas has been established, the role of HPV in non-oropharyngeal head and neck carcinomas is much less clear. Here, we investigated the prevalence and clinicopathologic significance of HPV and its reported biomarkers, CDKN2A(p16) and CDKN1A(p21), in laryngeal squamous cell carcinomas in patients treated either with primary surgery and postoperative radiation or with definitive radiation-based therapy. Nearly all of 76 tumors were keratinizing and none displayed the nonkeratinizing morphology that is typically associated with HPV infection in the oropharynx. However, CDKN2A(p16) immunohistochemistry was positive in 21 cases (28%) and CDKN1A(p21) in 34 (45%). CDKN2A(p16) and CDKN1A(p21) status strongly correlated with each other (P=0.0038). Yet, only four cases were HPV positive by DNA in situ hybridization or by reverse transcriptase PCR E6/E7 mRNA (all four were CDKN2A(p16) and CDKN1A(p21) positive). Unexpectedly, 9 additional tumors out of 20 CDKN2A(p16) positive cases harbored high-risk HPV DNA by PCR. For further investigation of this unexpected result, in situ hybridization for E6/E7 mRNA was performed on these nine cases and all were negative, confirming the absence of transcriptionally active virus. Patients with CDKN1A(p21)-positive tumors did have better overall survival (69% at 3 years) than those with CDKN1A(p21)-negative tumors (51% at 3 years) (P=0.045). There was also a strong trend towards better overall survival in the CDKN2A(p16)-positive group (P=0.058). Thus, it appears that the role of HPV is more complex in the larynx than in the oropharynx, and that CDKN2A(p16) and CDKN1A(p21) expression may not reflect HPV-driven tumors in most cases. Because of this, CDKN2A(p16) should not be used as a definitive surrogate marker of HPV-driven tumors in the larynx.
The effects of unilateral truncal vagotomy on gastric carcinogenesis in hypergastrinemic Japanese female cotton rats.

Regulatory peptides, 184:62–67.

Fossmark R, Sørdal ØF, Bakkelund KE, Nordrum IS, Waldum H (2013).
PMID: 23499800 | DOI: 10.1016/j.regpep.2013.03.006.

The stomach is innervated by the vagal nerve. Several studies have demonstrated that the vagal nerve has a trophic effect on the rat oxyntic mucosa and that the trophic effect of hypergastrinemia is dependent on intact vagal innervation. The effect of vagal denervation on gastric carcinogenesis has been examined in Mastomys natalensis and hypergastrinemic transgenic INS-GAS mice, with no effect of unilateral vagotomy in Mastomys but an anti-carcinogenic effect in INS-GAS mice. A proportion of female Japanese cotton rats develop spontaneous hypergastrinemia and ECL cell derived gastric carcinomas. In the current study we have examined the effects of unilateral anterior subdiaphragmatic vagotomy on gastric carcinogenesis. Female Japanese cotton rats were operated with unilateral anterior vagotomy or sham-operation at age 2 months and were terminated at age 10 months. Ten of fifteen animals operated by anterior vagotomy and 11 of 16 sham-operated developed hypergastrinemia. Vagotomy did not affect intragastric pH or serum gastrin. When comparing the anterior and posterior sides of the stomachs, vagotomy did not affect the occurrence of dysplasia or carcinoma development in the oxyntic mucosa. However, vagotomy resulted in lower stomach weight and reduced oxyntic mucosal thickness on the anterior side. Vagotomy also resulted in a reduction in volume density of chromogranin A positive cells in the oxyntic mucosa. In conclusion, vagotomy reduced the trophic effects of hypergastrinemia on the ECL cell and oxyntic mucosa, but did not prevent gastric carcinogenesis in female Japanese cotton rats. The effects of vagotomy on gastric carcinogenesis in animal models are conflicting and further studies in patients should be done to clarify the clinically significant effects of vagotomy.
Prognostic significance of stromal GREM1 expression in colorectal cancer

Human Pathology

2016 Dec 30

Jang BG, Kim HS, Chang WY, Bae JM, Oh HJ, Wen X, Jeong S, Cho NY, Kim WH, Kang GH.
PMID: - | DOI: 10.1016/j.humpath.2016.12.018

Cancer associated fibroblasts (CAFs) are the dominant cell population in the cancer stroma. Gremlin 1 (GREM1), an antagonist of the bone morphogenetic protein pathway, is expressed by CAFs in a variety of human cancers. However, its biological significance for cancer patients is largely unknown. We applied RNA in situ hybridization (ISH) to evaluate the prognostic value of stromal GREM1 expression in a large cohort of 670 colorectal cancers (CRCs). Overall GREM1 expression in CRCs was lower than that of the matched normal mucosa, and GREM1 expression had a strong positive correlation with BMI1 and inverse correlations with EPHB2 and OLFM4. RNA ISH localized the GREM expression to smooth muscle cells of the muscularis mucosa, fibroblasts around crypt bases and in the submucosal space of a normal colon. In various colon polyps, epithelial GREM1 expression was exclusively observed in traditional serrated adenomas. In total, 44% of CRCs were positive for stromal GREM1, which was associated with decreased lymphovascular invasion, a lower cancer stage, and nuclear β-catenin staining. Stromal GREM1 was significantly associated with improved recurrence-free and overall survival, although it was not found to be an independent prognostic marker in multivariate analyses. In addition, for locally advanced stage II and III CRCs, it was associated with better, stage-independent clinical outcomes. In summary, CRCs are frequently accompanied by GERM1-expressing fibroblasts, which are closely associated with low lymphovascular invasion and a better prognosis, suggesting stromal GREM1 as a potential biomarker and possible candidate for targeted therapy in the treatment of CRCs.

Expression of the Cholecystokinin-B Receptor in Neoplastic Gastric Cells

Horm Cancer.

2017 Oct 04

Mjønes P, Nordrum IS, Sørdal Ø, Sagatun L, Fossmark R, Sandvik A, Waldum HL.
PMID: 28980157 | DOI: 10.1007/s12672-017-0311-8

Gastric cancer is an important disease due to its high mortality. Despite the decline in frequency, most cases are discovered late in its course, and most of the cancer patients die within a few years of diagnosis. In addition to Helicobacter pylori gastritis, gastrin is considered an important factor in the development of this disease, and thus, cholecystokinin-B receptor (CCKBR) becomes of interest. The aim of our study was to explore whether CCKBR is expressed in stomach cancers. Thirty-seven tumors from 19 men and 18 women diagnosed with either adenocarcinoma or neuroendocrine neoplasm (NENs) were included in this study. The tumors were classified into 29 adenocarcinomas and eight NENs. Immunohistochemistry with antibodies against chromogranin A (CgA), synaptophysin and CCKBR, and in situ hybridization with probes against CgA, CCKBR and histidine decarboxylase were used to further explore these tumors. Thirty-three (89%) of the tumors expressed CCKBR protein, whereas only 20 (54%) of all tumors expressed CCKBR mRNA. Of the 20 tumors expressing CCKBR mRNA, eight were NENs and 12 were adenocarcinoma. The highest amount of CCKBR was expressed in NEN. Interestingly, a high degree of co-expression of CCKBR and CgA was observed when the two markers were examined together with in situ hybridization. In conclusion, we found that all eight NENs expressed CCKBR and neuroendocrine markers in a majority of tumor cells. The same markers were also expressed in a proportion of adenocarcinomas supporting the view that gastrin is important in the development of gastric cancer.

MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma

Experimental and Molecular Pathology

2017 Oct 26

Chu YH, Hardin H, Schneider DF, Chen H, Lloyd RV.
PMID: 29107050 | DOI: 10.1016/j.yexmp.2017.10.002

Abstract

BACKGROUND:

Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are well-recognized post-transcriptional regulators of gene expression. This study examines the expression of microRNA-21 (miR-21) and lncRNA MALAT1 in medullary thyroid carcinomas (MTCs) and their effects on tumor behavior.

METHODS:

Tissue microarrays (TMAs) were constructed using normal thyroid (n=39), primary tumors (N=39) and metastatic MTCs (N=18) from a total of 42 MTC cases diagnosed between 1987 and 2016. In situ hybridization with probes for miR-21 and MALAT1 was performed. PCR quantification of expression was performed in a subset of normal thyroid (N=10) and primary MTCs (N=32). An MTC-derived cell line (MZ-CRC-1) was transfected with small interfering RNAs (siRNAs) targeting miR-21 and MALAT1 to determine the effects on cell proliferation and invasion.

RESULTS:

In situ hybridization (ISH) showed strong (2+ to 3+) expression of miR-21 in 17 (44%) primary MTCs and strong MALAT1 expression in 37 (95%) primary MTCs. Real-time PCR expression of miR-21 (P<0.001) and MALAT1 (P=0.038) in primary MTCs were significantly higher than in normal thyroid, supporting the ISH findings. Experiments with siRNAs showed inhibition of miR-21 and MALAT1 expression in the MTC-derived cell line, leading to significant decreases in cell proliferation (P<0.05) and invasion (P<0.05).

CONCLUSION:

There is increased expression of miR-21 and MALAT1 in MTCs. This study also showed an in vitro pro-oncogenic effect of MALAT1 and miR-21 in MTCs. The results suggest that overexpression of miR-21 and MALAT1 may regulate MTC progression.

Pages

  • « first
  • ‹ previous
  • …
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?