Kawai, K;Sakamoto, A;Mokry, M;Ghosh, S;Xu, W;
| DOI: 10.1161/circ.146.suppl_1.15249
Background: Studies using techniques that relied on expression of an X-linked gene suggested predominant clones of smooth muscle cells (SMC) may exist in human atherosclerosis. These studies were limited by spatial resolution and nature of plaque types studied. We investigated whether clones of SMCs exist in unstable human atheroma. Methods and Results: We used a 25 nucleotide deletion in the 3’ UTR of the BGN gene, highly expressed by SMC and prevalent in 30% of females, to study clonal proliferation. Three different types of plaques (erosion, rupture, and adaptive intimal thickening) were selected from females heterozygous for the deletion mutant. Hybridization of target RNA-specific BaseScope probes was conducted to visualize the distribution of mutants and images displayed as a bubble plots. Clonality index was calculated as the percentage of each probe in each ROI. A clonality index equal to or exceeding the three times the standard deviation above the mean of the clonality index of the media in all plaques was considered clonal. In comparing clonality between media and intima, the mean percent ROI with clonality was significantly higher in the intima than in the media (42.3±18.2 vs 18.3±9.6%, P=0.003) and this was consistent for both eroded (27.0±9.8 vs 9.0±3.8%, P=0.04) and ruptured plaques (41.3±10.7 vs 20.0±3.5%, P=0.03). The relationship of dominant clone in the intima and media shows significant concordance in the majority of plaques studied (R=0.72, P
Casazza, RL;Philip, DT;Lazear, HM;
PMID: 35471083 | DOI: 10.1128/mbio.03857-21
Interferon lambda (IFN-λ) (type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here, we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I·C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling, specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages. IMPORTANCE Pregnancy is an immunologically complex situation, which must balance protecting the fetus from maternal pathogens with preventing maternal immune rejection of non-self fetal and placental tissue. Cytokines, such as interferon lambda (IFN-λ), contribute to antiviral immunity at the maternal-fetal interface. We found in a mouse model of congenital Zika virus infection that IFN-λ can have either a protective antiviral effect or cause immune-mediated pathology, depending on the stage of gestation when IFN-λ signaling occurs. Remarkably, both the protective and pathogenic effects of IFN-λ occurred through signaling exclusively in maternal immune cells rather than in fetal or placental tissues or in other maternal cell types, identifying a new role for IFN-λ at the maternal-fetal interface.
Addeo, A;Rothschild, S;Schneider, M;Waibel, C;Haefliger, S;Mark, M;Fernandez, E;Mach, N;Mauti, L;Jermann, P;Alborelli, I;Calgua, B;Savic-Prince, S;Joerger, M;Früh, M;
| DOI: 10.1016/j.lungcan.2022.08.016
Background Patients with advanced squamous-cell lung cancer (SQCLC) frequently (46%) exhibit tumor overexpression of fibroblast growth factor receptor (FGFR) messenger ribonucleic acid (mRNA). Rogaratinib is a novel oral pan-FGFR inhibitor with a good safety profile and anti-tumor activity in early clinical trials as a single agent in FGFR pathway-addicted tumors. SAKK 19/18 determined clinical activity of rogaratinib in patients with advanced SQCLC overexpressing FGFR1-3 mRNA. Methods Patients with advanced SQCLC failing standard systemic treatment and with FGFR1-3 mRNA tumor overexpression as defined in the protocol received rogaratinib 600 mg BID until disease progression or intolerable toxicity. A 6-months progression-free survival rate (6mPFS) ≤15% was considered uninteresting (H0), whereas a 6mPFS ≥38% was considered promising (H1). According to a Simon 2-stage design, 2 out of 10 patients of the first stage were required to be progression-free at 6 months. Comprehensive Genomic Profiling was performedusing the Oncomine Comprehensive Assay Plus (Thermo Fisher Scientific). Results Between July 2019 and November 2020, 49 patients were screened and 20 were classified FGFR-positive. Among a total of 15 patients, 6mPFS was reached in 1 patient (6.7%), resulting in trial closure for futility after the first stage. There were 7 (46.7%) patients with stable disease and 5 (33.3%) patients with progressive disease. Median PFS was 1.6 (95% CI 0.9-3.5) months and median overall survival (OS) 3.5 (95% CI 1.0-5.9) months. Most frequent treatment-related adverse events (TRAEs) included hyperphosphatemia in 8 (53%), diarrhea in 5 (33%), stomatitis in 3 (20%) and nail changes in 3 (20%) patients. Grade ≥3 TRAEs occurred in 6 (40%) patients. No associations between mutational profile and treatment outcome were observed. Conclusion Despite preliminary signals of activity, rogaratinib failed to improve PFS in patients with advanced SQCLC overexpressing FGFR mRNA. FGFR inhibitors in SQCLC remain a challenging field, and more in-depth understanding of pathway crosstalks may lead to the development of drug combinations with FGFR inhibitors resulting in improved outcomes.
American journal of respiratory and critical care medicine
Yanagihara, T;Tsubouchi, K;Zhou, Q;Chong, M;Otsubo, K;Isshiki, T;Schupp, JC;Sato, S;Scallan, C;Upagupta, C;Revill, S;Ayoub, A;Chong, SG;Dvorkin-Gheva, A;Kaminski, N;Tikkanen, J;Keshavjee, S;Paré, G;Guignabert, C;Ask, K;Kolb, MR;
PMID: 36917778 | DOI: 10.1164/rccm.202109-2174OC
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive lung scarring. IPF-related pulmonary vascular remodeling and pulmonary hypertension (PH) result in particularly poor prognosis.To study the pathogenesis of vascular remodeling in fibrotic lungs and its contribution to progression of fibrosis.We used an experimental model of lung fibrosis associated with PH by transient overexpression of active TGF-β1. Samples from patients with fibrotic lung diseases were analyzed in-depth by immunostaining, gene expression, and gene mutations.We found a reduction in endothelial cells (ECs) and activation of vascular smooth muscle cells (VSMCs) in fibrotic lungs. Co-culturing fibroblasts with VSMCs or ECs from fibrotic lungs induced fibrotic phenotypes in fibroblasts. IPF fibroblasts induced EC death and activation of VSMCs in co-culture systems. Decreased levels of BMPR2 and its signaling were observed in ECs and VSMCs from fibrotic lungs in both rats and humans. On fibroblasts treated with media from VSMCs, BMPR2 suppression in VSMCs led to fibrogenic effects. Tacrolimus activated BMPR2 signaling and attenuated fibrosis and PH in rodent lungs. Whole exome sequencing revealed rare mutations in PH-related genes, including BMPR2, in IPF patients undergoing transplantation. A unique missense BMPR2 mutation (p.Q721R) was discovered to have dysfunctional effects on BMPR2 signaling.Endothelial dysfunction and vascular remodeling in PH secondary to pulmonary fibrosis enhance fibrogenesis through impaired BMPR2 signaling. Tacrolimus may have value as treatment of advanced IPF and concomitant PH. Genetic abnormalities may determine the development of PH in advanced IPF.
Jiao, J;Sanchez, J;Saldarriaga, O;Solis, L;Tweardy, D;Maru, D;Stevenson, H;Beretta, L;
| DOI: 10.1016/j.jhepr.2022.100628
Background & Aims The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Subjects with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in NASH patients. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods Here, we explored whether STAT3 activation in hepatocytes and in non-hepatocytes areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD liver. Results pSTAT3 scores in non-hepatocytes areas progressively increased with fibrosis severity (r=0.53, p
Nurgalieva, A;Galliamova, L;Ekomasova, N;Yankina, M;Sakaeva, D;Valiev, R;Prokofyeva, D;Dzhaubermezov, M;Fedorova, Y;Khusnutdinov, S;Khusnutdinova, E;
PMID: 36833207 | DOI: 10.3390/genes14020280
Gastric cancer (GC) is one of the most common cancer types in the world with a high mortality rate. Hereditary predisposition for GC is not fully elucidated so far. The aim of this study was identification of possible new candidate genes, associated with the increased risk of gastric cancer development. Whole exome sequencing (WES) was performed on 18 DNA samples from adenocarcinoma specimens and non-tumor-bearing healthy stomach tissue from the same patient. Three pathogenic variants were identified: c.1320+1G>A in the CDH1 gene and c.27_28insCCCAGCCCCAGCTACCA (p.Ala9fs) of the VEGFA gene were found only in the tumor tissue, whereas c.G1874C (p.Cys625Ser) in the FANCA gene was found in both the tumor and normal tissue. These changes were found only in patients with diffuse gastric cancer and were absent in the DNA of healthy donors.
Rossi, R;Moore, M;Torelli, S;Ala, P;Catapano, F;Phadke, R;Morgan, J;Malhotra, J;Muntoni, F;
| DOI: 10.1016/j.nmd.2022.07.252
Antisense oligonucleotides (AONs) are short, synthetic nucleic acid sequences that work by modulating exon incorporation at the level of pre-mRNA. In Duchenne muscular dystrophy (DMD), a fatal muscle degenerative disorder caused by mutations in the DMD gene, AONs skip specific exons to correct the reading frame, producing an internally shortened but partly functional dystrophin protein. Golodirsen is an approved AON phosphorodiamidate morpholino oligomer (PMO) that specifically targets DMD exon 53. In the clinical study 4053-101, we demonstrated that intravenous golodirsen administration induces an unequivocal exon skipping and protein restoration in all the treated patients, but with inter-patient variability. We used fibroblasts isolated from the patients in this clinical trial, that were induced to undergo myogenic differentiation in vitro by expression of MyoD, to better understand the reasons behind the observed variability. We evaluated the amount and the molecular weight of dystrophin protein in treated and non-treated patient cells, by an automated capillary-based immunoassay (WES) system. In these in-vitro studies we demonstrated that the amount of protein was comparable to the previous in-vivo study and that the size of the restored protein was compatible with the different genomic deletions carried by patients. Next, we used an in-situ RNA hybridization technique, BaseScope, to investigate the sub-cellular localization of the DMD transcript in treated and non-treated differentiated patient-derived myogenic cells in vitro, which allowed us to assess the ratio of skipped and unskipped products. Our study provides additional information on the dynamics of DMD mRNA in patients and may help to better understand the biological reasons underpinning variability in dystrophin restoration that can be seen in AON clinical trials.
The American journal of surgical pathology
Butcher, MR;White, MJ;Rooper, LM;Argani, P;Cimino-Mathews, A;
PMID: 35522890 | DOI: 10.1097/PAS.0000000000001913
Breast adenoid cystic carcinoma (AdCC) has overlapping features with basal-like triple-negative breast carcinoma (TNBC), yet carries a more favorable prognosis, and accurate diagnosis is critical. Like salivary gland AdCC, breast AdCC demonstrates recurrent alterations in the MYB gene. Novel chromogenic RNA in situ hybridization (ISH) for MYB has emerged as sensitive and specific for salivary gland AdCC. Here, we evaluate MYB RNA ISH in invasive ductal carcinomas (IDCs) including basal-like TNBC, and in the histologic mimics ductal carcinoma in situ (DCIS) and collagenous spherulosis. MYB RNA ISH was also performed on previously constructed tissue microarrays containing 78 evaluable IDC, including 30 basal-like TNBC (EGFR+ and/or CK5/6+), 19 luminal A (ER+/HER-2-), 12 HER-2+ (ER-/HER-2+), 11 non-basal-like TNBC, and 6 luminal B (ER+/HER-2+). MYB RNA ISH overexpression was seen in 100% (n=18/18) of primary breast AdCC and 10% (n=8/78) of IDC (P<0.0001). MYB RNA ISH was overexpressed in 37% (n=7/19) of luminal A and 8% (n=1/12) of HER-2+ IDC, and in no cases of TNBC or luminal B IDC. The majority (67%, n=8/12) of DCIS and all (n=7) cases of collagenous spherulosis demonstrated overexpression of MYB RNA. MYB gene rearrangement was detected in 67% (n=4/6) evaluable AdCC. Although MYB RNA ISH overexpression cannot be used to distinguish between cribriform DCIS or collagenous spherulosis and AdCC, MYB RNA ISH is absent in basal-like TNBC and rare in ER+ or HER-2+ IDC. MYB RNA ISH could be a useful, sensitive, and rapid diagnostic adjunct in the workup of a triple-negative carcinoma in the breast.
Bárez-López, S;Gadd, GJ;Pauža, AG;Murphy, D;Greenwood, MP;
PMID: 37271138 | DOI: 10.1159/000531352
Despite the widespread use of general anaesthetics, the mechanisms mediating their effects are still not understood. Although suppressed in most parts of the brain, neuronal activity, as measured by FOS activation, is increased in the hypothalamic supraoptic nucleus (SON) by numerous general anaesthetics, and evidence points to this brain region being involved in the induction of general anaesthesia and natural sleep. Posttranslational modifications of proteins, including changes in phosphorylation, enable fast modulation of protein function which could be underlying the rapid effects of general anaesthesia. In order to identify potential phosphorylation events in the brain mediating general anaesthesia effects, we have explored the phosphoproteome responses in the rat SON, and compared these to cingulate cortex (CC) which displays no FOS activation is response to general anaesthetics.Adult Sprague-Dawley rats were treated with isoflurane for 15 minutes. Proteins from the CC and SON were extracted and processed for Nano-LC Mass Spectrometry (LC-MS/MS). Phosphoproteomic determinations were performed by LC-MS/MS.We found many changes in the phosphoproteomes of both the CC and SON in response to 15 minutes of isoflurane exposure. Pathway analysis indicated that proteins undergoing phosphorylation adaptations are involved in cytoskeleton remodelling and synaptic signalling events. Importantly, changes in protein phosphorylation appeared to be brain region-specific suggesting that differential phosphorylation adaptations might underlie the different neuronal activity responses to general anaesthesia between the CC and SON.In summary, these data suggest that rapid posttranslational modifications in proteins involved in cytoskeleton remodelling and synaptic signalling events might mediate the central mechanisms mediating general anaesthesia.S. Karger AG, Basel.
Brain, behavior, and immunity
Frank, MG;Fleshner, M;Maier, SF;
PMID: 37116592 | DOI: 10.1016/j.bbi.2023.04.009
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produces an array of neurologic and neuropsychiatric symptoms in the acute and post-acute phase of infection (PASC; post-acute sequelae of SARS-CoV-2 infection). Neuroinflammatory processes are considered key factors in the etiology of these symptoms. Several mechanisms underpinning the development of inflammatory events in the brain have been proposed including SARS-CoV-2 neurotropism and peripheral inflammatory responses (i.e., cytokine storm) to infection, which might produce neuroinflammation via immune-to-brain signaling pathways. In this review, we explore evidence in support of an alternate mechanism whereby structural proteins (e.g., spike and spike S1 subunit) derived from SARS-CoV-2 virions function as pathogen-associated molecular patterns (PAMPs) to elicit proinflammatory immune responses in the periphery and/or brain via classical Toll-Like Receptor (TLR) inflammatory pathways. We propose that SARS-CoV-2 structural proteins might directly produce inflammatory processes in brain independent of and/or in addition to peripheral proinflammatory effects, which might converge to play a causal role in the development of neurologic/neuropsychiatric symptoms in COVID-19.
Rheumatology Advances in Practice
Murphy, M;Edemobi, P;Leasure, A;Gulati, M;Miller, E;Damsky, W;Cohen, J;
| DOI: 10.1093/rap/rkad030
Objective The degree to which sarcoidosis patients are affected by autoimmune diseases is poorly understood. Prior studies of autoimmune co-morbidities in sarcoidosis have focused on populations outside the USA or have been impeded by small sample sizes and limited scope. This case-control study evaluated the association between sarcoidosis and autoimmune diseases in a large, diverse cohort based in the USA. Methods We used data from the All of Us research programme to conduct a case-control study involving patients ≥18 years old, from 2018 to the present, diagnosed with sarcoidosis. Sarcoidosis cases and age-, sex- and race-matched controls were identified in a 1:4 ratio. Autoimmune co-morbidities were compared between sarcoidosis patients and controls in univariable and multivariable analyses using logistic regression. The degree of association was measured using the odds ratio (OR). Results A total of 1408 sarcoidosis cases and 5632 controls were included in this study. Seven of 24 examined autoimmune diseases were significantly associated with sarcoidosis in our multivariable analysis (P < 0.05). The composite variable of any autoimmune disease was also significantly associated with sarcoidosis (OR = 2.29, P < 0.001). Conclusion We demonstrate an association between sarcoidosis and multiple autoimmune diseases in a large and diverse cohort based in the USA. These results underscore the need for careful screening of sarcoidosis patients for concomitant autoimmune disease.
Yoshimori, M;Ohashi, A;Yoshioka, K;Yokota, T;Shimizu, N;Nishio, M;Arai, A;
| DOI: 10.1182/blood-2022-169693
RESULTS: We identified highly abundant miR-BARTs in the 4 cell lines and the EBV-infected T- or NK-cells from 12 sCAEBV patient's PBMCs (age of 17 to 47 y.o). The expression of miR-BHRFs was not detected in these cells. miR-BART7-3p, miR-BART6-3p, and miR-BART5-5p were the top three expressed among the EBV-derived miRNAs. The highest miR-BART expression among all samples was miR-BART7-3p. We also confirmed the expression of miR-BART7-3p and miR-BART5-5p by _in situ_ hybridization in histological specimens of 3 patients which were observable. Two reports have demonstrated deletion in part of BART region in approximately 30% of sCAEBV cases (_Okuno et al, Nature Microbiology, 2018. Wongwiwat et al, J. Virology, 2022)_. In contrast, no deletion was detected in the region encoding miR-BARTs of EBV obtained from 10 sCAEBV patients. Finally, we examined the role of miR-BART7-3p in sCAEBV. Inhibition of miR-BART7-3p by the inhibitor did not show significant effects on cell proliferation in SNT16 and SNK10 cells. However, GO analysis showed upregulation of immune activation-related genes after miR-BART7-3p inhibition. These results suggest that miR-BART7-3p may function as an immunosuppressor in sCAEBV.