Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (183)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (148) Apply TBD filter
  • SARS-CoV-2 (3) Apply SARS-CoV-2 filter
  • MYB (2) Apply MYB filter
  • Sox9 (1) Apply Sox9 filter
  • Bmp4 (1) Apply Bmp4 filter
  • AVP (1) Apply AVP filter
  • CD34 (1) Apply CD34 filter
  • Rspo4 (1) Apply Rspo4 filter
  • FOXP2 (1) Apply FOXP2 filter
  • CSF1 (1) Apply CSF1 filter
  • DDIT3 (1) Apply DDIT3 filter
  • TH (1) Apply TH filter
  • CDH6 (1) Apply CDH6 filter
  • EGFR (1) Apply EGFR filter
  • FGFR1 (1) Apply FGFR1 filter
  • FOS (1) Apply FOS filter
  • GREM1 (1) Apply GREM1 filter
  • IDO1 (1) Apply IDO1 filter
  • IGKC (1) Apply IGKC filter
  • IGLC1 (1) Apply IGLC1 filter
  • Tph2 (1) Apply Tph2 filter
  • MUC2 (1) Apply MUC2 filter
  • Reln (1) Apply Reln filter
  • PDGFRA (1) Apply PDGFRA filter
  • VWF (1) Apply VWF filter
  • CHI3L1 (1) Apply CHI3L1 filter
  • IGLL5 (1) Apply IGLL5 filter
  • DLL3 (1) Apply DLL3 filter
  • NR5A2 (1) Apply NR5A2 filter
  • HBV (1) Apply HBV filter
  • RIPK3 (1) Apply RIPK3 filter
  • Cd109 (1) Apply Cd109 filter
  • vGlut2 (1) Apply vGlut2 filter
  • HPV E6/E7 (1) Apply HPV E6/E7 filter
  • HPV (1) Apply HPV filter
  • 16S (1) Apply 16S filter
  • DapB (1) Apply DapB filter
  • Adamts1 (1) Apply Adamts1 filter
  • C-fos (1) Apply C-fos filter
  • Ccl21a (1) Apply Ccl21a filter
  • Bmpr2 (1) Apply Bmpr2 filter
  • Lncenc1 (1) Apply Lncenc1 filter
  • sox9a (1) Apply sox9a filter
  • Shroom4 (1) Apply Shroom4 filter
  • ogna (1) Apply ogna filter
  • fgf10a (1) Apply fgf10a filter
  • Albumin (1) Apply Albumin filter
  • MuAstV1 (1) Apply MuAstV1 filter
  • Mycobacterium tuberculosis 16S (1) Apply Mycobacterium tuberculosis 16S filter
  • AADC (1) Apply AADC filter

Product

  • (-) Remove TBD filter TBD (183)

Research area

  • Cancer (24) Apply Cancer filter
  • Neuroscience (24) Apply Neuroscience filter
  • Other: Neuromuscular Disorders (9) Apply Other: Neuromuscular Disorders filter
  • Development (8) Apply Development filter
  • Inflammation (8) Apply Inflammation filter
  • Other: Methods (8) Apply Other: Methods filter
  • Other: Heart (6) Apply Other: Heart filter
  • Other: Lung (6) Apply Other: Lung filter
  • Covid (5) Apply Covid filter
  • HIV (5) Apply HIV filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Aging (2) Apply Aging filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Collagen (2) Apply Collagen filter
  • Endocrinology (2) Apply Endocrinology filter
  • HPV (2) Apply HPV filter
  • Obesity (2) Apply Obesity filter
  • Other: Gut (2) Apply Other: Gut filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Other: Reproduction (2) Apply Other: Reproduction filter
  • Other: Skin (2) Apply Other: Skin filter
  • Pain (2) Apply Pain filter
  • SELENON-Related Myopathy (2) Apply SELENON-Related Myopathy filter
  • Skin (2) Apply Skin filter
  • Stress (2) Apply Stress filter
  • Ulcersative Colitis (2) Apply Ulcersative Colitis filter
  • Anxiety (1) Apply Anxiety filter
  • Bone (1) Apply Bone filter
  • Cellular Senescence (1) Apply Cellular Senescence filter
  • CGT (1) Apply CGT filter
  • Colitis (1) Apply Colitis filter
  • diabetes (1) Apply diabetes filter
  • Epilepsy (1) Apply Epilepsy filter
  • Immunology (1) Apply Immunology filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Infectious Disease: Astroviruses (1) Apply Infectious Disease: Astroviruses filter
  • Infectious Disease: Mycobacterium tuberculosis (1) Apply Infectious Disease: Mycobacterium tuberculosis filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Lung (1) Apply Lung filter
  • Memory (1) Apply Memory filter
  • Metabolism (1) Apply Metabolism filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Intestine (1) Apply Other: Intestine filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Liver (1) Apply Other: Liver filter
  • Regeneration (1) Apply Regeneration filter
  • Sex Differences (1) Apply Sex Differences filter
  • Sleep (1) Apply Sleep filter

Category

  • Publications (183) Apply Publications filter
A thyroid hormone-independent role for transthyretin in neural stem cells of the postnatal mouse subventricular zone?

Endocrine Abstracts

2022 Sep 02

Vancamp, P;Le, B;Demeneix, B;Remaud, S;
| DOI: 10.1530/endoabs.84.op-04-19

Transthyretin (TTR) distributes thyroxine in the cerebrospinal fluid of mammals. Choroid plexus epithelial cells produce and secrete TTR, and were long recognized as the only CNS source of TTR. However, research over the last years has reported neuronal-specific expression as well, but without a clear function. Recently, we found Ttr transcripts in cells of the adult mouse subventricular zone (SVZ), the largest neural stem cell (NSC) region, but the protein was undetectable. We therefore investigated in more detail what role TTR might play in the SVZ, and when. We mapped temporal-spatial Ttr expression by re-analysing publicly available single-cell RNA-Seq data obtained from dissected mouse SVZs at E14-E17-P2-P7-P20-P61. We observed a peak in Ttr expression in NSCs, neural progenitors and differentiating cells at postnatal day 7 (P7). That is one week prior to when thyroxine serum levels peak and T3 activates SVZ-NSCs that start generating neurons and glia at a constant rate. RNAscope on P7 brain sections confirmed that few Ttr transcripts are present in a many SVZ-progenitors, oligodendrocyte precursors and neuroblasts. Unexpectedly though, no protein was detectable using commercially available antibodies, signal amplification and appropriate controls. This might suggest TTR is rapidly secreted to affect nearby cells. To test this hypothesis, we prepared neurospheres from dissected SVZ-progenitors at P7. After 7 days of proliferation, cells were dissociated, and allowed to differentiate for 1 or 5 days. In parallel with controls, we treated them once at day 0 of differentiation with a low (2.5 µg/ml) or a high dose (25 µg/ml) of human recombinant TTR, or with 5 nM T3. Low TTR doses reduced cell mitosis at day 1, as did T3. After 5 days, we counted a 30% lower proportion of differentiated neuroblasts with the highest TTR dose. That proportion had dropped 3-fold in the presence of T3. Proportions of oligodendroglia after 5 days of differentiation were only significantly higher in T3 conditions. As a result, the neuron/glia balance shifted in favour of oligodendrogenesis under T3, and borderline-significantly following high TTR doses. Altogether, the murine SVZ represents a novel region containing cells that express Ttr, with a peak at P7, despite seeming absence of the protein itself, precluding deducing its exact role. Single-cell RNA-Seq on treated neurospheres could reveal how exogenous TTR affects intracellular pathways, and whether its action is TH-dependent or not. This can help unravelling the pathophysiology of familial amyloid polyneuropathy, in which misfolded TTR proteins cause neurodegeneration.
Longitudinal transcriptomic analysis of mouse sciatic nerve reveals pathways associated with age-related muscle pathology

Journal of cachexia, sarcopenia and muscle

2023 Mar 10

Comfort, N;Gade, M;Strait, M;Merwin, SJ;Antoniou, D;Parodi, C;Marcinczyk, L;Jean-Francois, L;Bloomquist, TR;Memou, A;Rideout, HJ;Corti, S;Kariya, S;Re, DB;
PMID: 36905126 | DOI: 10.1002/jcsm.13204

Sarcopenia, the age-associated decline in skeletal muscle mass and strength, has long been considered a disease of muscle only, but accumulating evidence suggests that sarcopenia could originate from the neural components controlling muscles. To identify early molecular changes in nerves that may drive sarcopenia initiation, we performed a longitudinal transcriptomic analysis of the sciatic nerve, which governs lower limb muscles, in aging mice.Sciatic nerve and gastrocnemius muscle were obtained from female C57BL/6JN mice aged 5, 18, 21 and 24 months old (n = 6 per age group). Sciatic nerve RNA was extracted and underwent RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) were validated using quantitative reverse transcription PCR (qRT-PCR). Functional enrichment analysis of clusters of genes associated with patterns of gene expression across age groups (adjusted P-value < 0.05, likelihood ratio test [LRT]) was performed. Pathological skeletal muscle aging was confirmed between 21 and 24 months by a combination of molecular and pathological biomarkers. Myofiber denervation was confirmed with qRT-PCR of Chrnd, Chrng, Myog, Runx1 and Gadd45ɑ in gastrocnemius muscle. Changes in muscle mass, cross-sectional myofiber size and percentage of fibres with centralized nuclei were analysed in a separate cohort of mice from the same colony (n = 4-6 per age group).We detected 51 significant DEGs in sciatic nerve of 18-month-old mice compared with 5-month-old mice (absolute value of fold change > 2; false discovery rate [FDR] < 0.05). Up-regulated DEGs included Dbp (log2 fold change [LFC] = 2.63, FDR < 0.001) and Lmod2 (LFC = 7.52, FDR = 0.001). Down-regulated DEGs included Cdh6 (LFC = -21.38, FDR < 0.001) and Gbp1 (LFC = -21.78, FDR < 0.001). We validated RNA-seq findings with qRT-PCR of various up- and down-regulated genes including Dbp and Cdh6. Up-regulated genes (FDR < 0.1) were associated with the AMP-activated protein kinase signalling pathway (FDR = 0.02) and circadian rhythm (FDR = 0.02), whereas down-regulated DEGs were associated with biosynthesis and metabolic pathways (FDR < 0.05). We identified seven significant clusters of genes (FDR < 0.05, LRT) with similar expression patterns across groups. Functional enrichment analysis of these clusters revealed biological processes that may be implicated in age-related changes in skeletal muscles and/or sarcopenia initiation including extracellular matrix organization and an immune response (FDR < 0.05).Gene expression changes in mouse peripheral nerve were detected prior to disturbances in myofiber innervation and sarcopenia onset. These early molecular changes we report shed a new light on biological processes that may be implicated in sarcopenia initiation and pathogenesis. Future studies are warranted to confirm the disease modifying and/or biomarker potential of the key changes we report here.
Development and use of a high-throughput screen to identify novel modulators of the corticotropin releasing factor binding protein

SLAS discovery : advancing life sciences R & D

2022 Oct 07

Haass-Koffler, CL;Francis, TC;Gandhi, P;Patel, R;Naemuddin, M;Nielsen, CK;Bartlett, SE;Bonci, A;Vasile, S;Hood, BL;Suyama, E;Hedrick, MP;Smith, LH;Limpert, AS;Roberto, M;Cosford, NDP;Sheffler, DJ;
PMID: 36210051 | DOI: 10.1016/j.slasd.2022.09.005

Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP.We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA).We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP.These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.
Structural placental changes in women with intra-pregnancy novel coronavirus infection COVID-19 (review)

Obstetrics, Gynecology and Reproduction

2023 Jan 15

Yakimova, A;Borovaya, S;Mukhamedshina, V;Datsenko, N;Kucherenko, S;Pozdnyakov, I;Nikitenko, E;
| DOI: 10.17749/2313-7347/ob.gyn.rep.2022.337

Introduction. During the COVID-19 pandemic, the question regarding an effect of related infection on the body of pregnant women and the fetoplacental complex has emerged, with many aspects of this issue still being unknown. At the moment, it has been proven that in some cases the course of COVID-19 can be accompanied by severe systemic inflammatory reaction leading to hypercoagulable state.Aim: to search for evidence of a direct and/or indirect effect of SARS-CoV-2 infection on human placenta structure.Materials and Methods. Taking into account the goal, this review was compiled according to the type of a narrative review of publications on a topic of interest. A search for English-language publications dated of 01.12.2019 till 01.12.2021 in PubMed/MEDLINE, Cochrane, Web of Science databases was made. The search queries included the following keywords: combinations of «coronavirus» and «infection during pregnancy», «placental structure» and «2019-nCoV», «COVID-19 and pregnancy», «SARSCoV-2 and pregnancy». In the process of writing the article, in order to improve the reader's understanding of the essence of debated issue, there was a need to discuss some of the results with literary sources published earlier 2019 that were not directly related to the topic of the new coronavirus infection (there are 6 such sources). We analyzed full-text publications, both reports on original research and meta-analyses on relevant topics. In total, 351 full-text publications met the query criteria, of which 54 were selected as meeting the objectives of the study. The select reports were discussed by the co-authors, duplicates were excluded and 34 of them were included in this review. In those that were excluded from the review, information about the clinical course of pregnancy and its outcome during novel coronavirus infection prevailed, or isolated cases of studying insignificant placental structural changes were discussed. Studies with a small number of observations were selected only in the case of the uniqueness of the published data, the absence of scientific papers where similar studies would have been conducted in larger sample.Results. Pregnancy complicated by COVID-19 may be accompanied by placental structural changes, which represent both a manifestation of compensatory-adaptive reactions and a consequence of the damaging effect to the placenta due to infectious process. In case of late (in the III trimester) disease in pregnant woman with mild COVID-19, placental disorders are predominantly of compensatory-adaptive nature, specific cytological signs of viral cell damage are uncharacteristic. During COVID-19 infection, chronic histiocytic intervillositis and syncytiotrophoblast necrosis occur more often than in average population, and adverse fetal outcomes are characterized by additional marked increase in intervillous fibrinoid deposition. Before COVID-19 pandemic, chronic histiocytic intervillositis was described in about 6 out of 10,000 placentas (0.6 %) in II and III trimesters.Conclusion. The high frequency of chronic histiocytic intervillositis, both in the placenta of paired women with live-born infants infected prenatally due to maternal virus transmission, and in the placentas of stillborn infected infants, allows us to cautiously assume that such placental structural changes are more characteristic for damage by SARS-CoV-2 rather than other infectious agents. It is necessary to study a relationship between placental structural changes occurred at different gestation ages, as well as clinical course and outcome of pregnancy during COVID-19.
Editorial: Cognitive and Motor Control Based on Brain-Computer Interfaces for Improving the Health and Well-Being in Older Age

Frontiers in human neuroscience

2022 Apr 06

Belkacem, AN;Falk, TH;Yanagisawa, T;Guger, C;
PMID: 35463924 | DOI: 10.3389/fnhum.2022.881922

STANDARDIZED FECAL MICROBIOTA TRANSPLANTATION INCLUDING MICROBIAL BASED DONOR SELECTION IN ACTIVE ULCERATIVE COLITIS PATIENTS: A RANDOMIZED,

Acta Gastro 

2022 Jan 01

Caenepeel, C;Deleu, S;

Introduction: Four randomized controlled trials studying fecal microbiota transplantation (FMT) in active ulcerative colitis (UC) patients showed variable success rates. The efficacy of FMT appears to be influenced by various factors including donor- and procedure-specific characteristics. Aim: We hypothesized that the outcome of FMT in patients with active UC could be improved by donor preselection on microbiota level, by using a strict anaerobic approach, and by repeated FMT administration. Methods: The RESTORE-UC trial (NCT03110289) was a national, multi-centric double-blind, sham-controlled randomized trial. Active UC patients (Total Mayo score 4-10 with endoscopic sub-score > or = 2) were randomly allocated (1:1) to receive 4 anaerobic-prepared superdonor (S) FMT or autologous (A) FMT by permutated blocks (2- 4) and stratified for weight, concomitant steroid use, and therapy refractoriness. S-FMTs were selected after a rigorous screening excluding samples with Bacteroides 2 enterotype, high abundances of Fusobacterium, Escherichia coli and Veillonella and the lowest microbial loads (Q1). A futility analysis after 66% (n=72) of inclusions was planned per protocol including a modified intention-to-treat (mITT) analysis using non-responder imputation (NRI) for patients receiving at least one FMT. The primary endpoint was steroid-free clinical remission (Total Mayo ≤ 2, with no subscore >1) at week 8. Secondary outcomes included steroid-free PRO-2 remission (Combined Mayo subscores of ≤1 for rectal bleeding plus stool frequency) and response (≥3 points or/and ≥50% reduction from baseline in combined Mayo subscores for rectal bleeding plus stool frequency) and steroid-free endoscopic remission (Mayo endoscopic subscore ≤1) and response (Mayo endoscopy subscore ≤1 and ≥1 point reduction from baseline). Results: Between March 2017-2021, 72 patients signed the ICF and 66 were randomly allocated to S-FMT (n=30) or A-FMT (N=36) and received at least one FMT. Both study arms were matched for baseline characteristics, yet a trend (p= 0,07) towards higher concomitant biological use in the S-FMT arm was observed. A remarkably high proportion of patients were previously exposed to biologicals (58.3% and 60.0% for the A-FMT and S-FMT group respectively). In the S-FMT and the A-FMT respectively 4 and 5 patients terminated the trial early due to worsening of colitis (4 in both arms) or FMT enema intolerance (1 A-FMT). They were included in the mITT analysis using NRI, showing after 66% of intended inclusions, the primary endpoint was reached in 3/30 (mITT with NRI 10.0%) S-FMT and 5/31 (13.9%) patients randomized to A-FMT (p=0.72). As the predefined minimum difference of 5% between both treatment arms was not attained, the study was stopped due to futility. Steroid-free PRO-2 remission was achieved in 7/30 (23,3%) patients on S-FMT and 10/36 (27,8%) on A-FMT (p= 0,78). Steroid-free PRO-2 response was attained by respectively 9/30 (30,0%) patients in the S-FMT arm and 12/36 (33,3%) patients in the A-FMT arm (p= 0,80). Steroid-free endoscopic response and remission were noted in 5/30 (16,7%) assigned to the S-FMT arm compared with 7/36 (19,4%) allocated to the A-FMT arm (p= 1.0). Of note, no patients on concomitant biologicals reached the primary endpoint, and there were 2 serious adverse events in the A-FMT arm: dysuria requiring hospitalization and worsening of UC requiring colectomy. Conclusions: In this double-blind sham-controlled trial comparing repeated administrations of anaerobic-prepared S-FMT with A-FMT in patients with active UC, no significant difference in steroid-free remission rates at week 8 were observed. The FMT procedure was generally well tolerated, and no new safety signals were observed.
STANDARDIZED FECAL MICROBIOTA TRANSPLANTATION INCLUDING MICROBIAL BASED DONOR SELECTION IN ACTIVE ULCERATIVE COLITIS PATIENTS

Acta Gastro-Enterologica Belgica

2022 Jan 01

Caenepeel, C;Deleu, S;Arnauts, K;Castellanos, JV;Braekeleire, S;Machiels, K;Baert, F;Mana, F;Pouillon, L;Hindryckx, P;Lobaton, T;Louis, E;Franchimont, D;Ferrante, M;Sabino, J;Vieira-Silva, S;Falony, G;Raes, J;Vermeire, S;

Introduction: Four randomized controlled trials studying fecal microbiota transplantation (FMT) in active ulcerative colitis (UC) patients showed variable success rates. The efficacy of FMT appears to be influenced by various factors including donor- and procedure-specific characteristics. Aim: We hypothesized that the outcome of FMT in patients with active UC could be improved by donor preselection on microbiota level, by using a strict anaerobic approach, and by repeated FMT administration. Methods: The RESTORE-UC trial (NCT03110289) was a national, multi-centric double-blind, sham-controlled randomized trial. Active UC patients (Total Mayo score 4-10 with endoscopic sub-score > or = 2) were randomly allocated (1:1) to receive 4 anaerobic-prepared superdonor (S) FMT or autologous (A) FMT by permutated blocks (2- 4) and stratified for weight, concomitant steroid use, and therapy refractoriness. S-FMTs were selected after a rigorous screening excluding samples with Bacteroides 2 enterotype, high abundances of Fusobacterium, Escherichia coli and Veillonella and the lowest microbial loads (Q1). A futility analysis after 66% (n=72) of inclusions was planned per protocol including a modified intention-to-treat (mITT) analysis using non-responder imputation (NRI) for patients receiving at least one FMT. The primary endpoint was steroid-free clinical remission (Total Mayo ≤ 2, with no subscore >1) at week 8. Secondary outcomes included steroid-free PRO-2 remission (Combined Mayo subscores of ≤1 for rectal bleeding plus stool frequency) and response (≥3 points or/and ≥50% reduction from baseline in combined Mayo subscores for rectal bleeding plus stool frequency) and steroid-free endoscopic remission (Mayo endoscopic subscore ≤1) and response (Mayo endoscopy subscore ≤1 and ≥1 point reduction from baseline). Results: Between March 2017-2021, 72 patients signed the ICF and 66 were randomly allocated to S-FMT (n=30) or A-FMT (N=36) and received at least one FMT. Both study arms were matched for baseline characteristics, yet a trend (p= 0,07) towards higher concomitant biological use in the S-FMT arm was observed. A remarkably high proportion of patients were previously exposed to biologicals (58.3% and 60.0% for the A-FMT and S-FMT group respectively). In the S-FMT and the A-FMT respectively 4 and 5 patients terminated the trial early due to worsening of colitis (4 in both arms) or FMT enema intolerance (1 A-FMT). They were included in the mITT analysis using NRI, showing after 66% of intended inclusions, the primary endpoint was reached in 3/30 (mITT with NRI 10.0%) S-FMT and 5/31 (13.9%) patients randomized to A-FMT (p=0.72). As the predefined minimum difference of 5% between both treatment arms was not attained, the study was stopped due to futility. Steroid-free PRO-2 remission was achieved in 7/30 (23,3%) patients on S-FMT and 10/36 (27,8%) on A-FMT (p= 0,78). Steroid-free PRO-2 response was attained by respectively 9/30 (30,0%) patients in the S-FMT arm and 12/36 (33,3%) patients in the A-FMT arm (p= 0,80). Steroid-free endoscopic response and remission were noted in 5/30 (16,7%) assigned to the S-FMT arm compared with 7/36 (19,4%) allocated to the A-FMT arm (p= 1.0). Of note, no patients on concomitant biologicals reached the primary endpoint, and there were 2 serious adverse events in the A-FMT arm: dysuria requiring hospitalization and worsening of UC requiring colectomy. Conclusions: In this double-blind sham-controlled trial comparing repeated administrations of anaerobic-prepared S-FMT with A-FMT in patients with active UC, no significant difference in steroid-free remission rates at week 8 were observed. The FMT procedure was generally well tolerated, and no new safety signals were observed.
First person- Xuming Zhu

Disease Models & Mechanisms

2023 Mar 01

Zhu, X;
| DOI: 10.1242/dmm.050160

First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping researchers promote themselves alongside their papers. Xuming Zhu is first author on ‘ FZD2 regulates limb development by mediating β-catenin-dependent and -independent Wnt signaling pathways’, published in DMM. Xuming is an instructor in the lab of Sarah E. Millar at Icahn School of Medicine at Mount Sinai, New York, NY, USA, investigating the molecular mechanisms that underlie the development of appendages, epithelial homeostasis and diseases.
MYB RNA detection by in situ hybridisation has high sensitivity and specificity for the diagnosis of adenoid cystic carcinoma

Pathology

2023 Mar 01

Tadi, S;Ka-Yan Cheung, V;Lee, C;Nguyen, K;Luk, P;Low, T;Palme, C;Clark, J;Gupta, R;
| DOI: 10.1016/j.pathol.2023.01.007

Adenoid cystic carcinoma (ACC) is one of the most common primary salivary gland cancers. ACC has several benign and malignant mimics amongst salivary gland neoplasms. An accurate diagnosis of ACC is essential for optimal management of the patients and their follow-up. Upregulation of MYB has been described in 85-90% of ACC, but not in other salivary gland neoplasms. In ACC, MYB upregulation can occur as a result of a genetic rearrangement t(6;9)(q22-23;p23-24), MYB copy number variation (CNV), or enhancer hijacking of MYB. All mechanisms of MYB upregulation result in increased RNA transcription that can be detected using RNA in situ hybridisation (ISH) methods. In this study, utilising 138 primary salivary gland neoplasms including 78 ACC, we evaluate the diagnostic utility of MYB RNA ISH for distinguishing ACC from other primary salivary gland neoplasms with a prominent cribriform architecture including pleomorphic adenoma, basal cell adenoma, basal cell adenocarcinoma, epithelial myoepithelial carcinoma, and polymorphous adenocarcinoma. Fluorescent in situ hybridisation and next generation sequencing were also performed to evaluate the sensitivity and specificity of RNA ISH for detecting increased MYB RNA when MYB gene alterations were present. Detection of MYB RNA has 92.3% sensitivity and 98.2% specificity for a diagnosis of ACC amongst salivary gland neoplasms. The sensitivity of MYB RNA detection by ISH (92.3%) is significantly higher than that of the FISH MYB break-apart probe (42%) for ACC. Next generation sequencing did not demonstrate MYB alterations in cases that lacked MYB RNA overexpression indicating high sensitivity of MYB RNA ISH for detecting MYB gene alterations. The possibility that the sensitivity may be higher in clinical practice with contemporary samples as compared with older retrospective tissue samples with RNA degradation is not entirely excluded. In addition to the high sensitivity and specificity, MYB RNA testing can be performed using standard IHC platforms and protocols and evaluated using brightfield microscopy making it a time and cost-efficient diagnostic tool in routine clinical practice.
Gut Microbiota And Metabolites Drive Persistent Pain In Sickle Cell Disease

The Journal of Pain

2023 Apr 01

Sadler, K;Atkinson, S;Ehlers, V;Waltz, T;Hayward, M;Rodriguez-Garcia, D;Salzman, N;Stucky, C;Brandow, A;
| DOI: 10.1016/j.jpain.2023.02.104

Severe debilitating pain is the most common complication and reason for hospitalization for individuals with sickle cell disease (SCD), a genetic blood disorder that affects 100,000 people in the US and over 3 million worldwide. Despite this, the biological basis of chronic SCD pain is not fully understood. Using transgenic SCD mice and fecal material transplant paradigms, we determined that gastrointestinal tract contents drive persistent SCD pain. Mechanical allodynia was temporarily alleviated in SCD mice following fecal transplant from wildtype animals. In contrast, wildtype mice developed mechanical and cold allodynia following fecal transplant from SCD animals. To identify gut bacterial species and metabolites responsible for SCD pain, we completed 16s rRNA sequencing and metabolomic screening respectively on transplant recipient feces. Bilirubin, a product of heme breakdown, was significantly elevated in the feces of SCD mice and mice that received SCD fecal transplants, as well as in the plasma of individuals with SCD. Oral administration of bilirubin induced mechanical allodynia in wildtype mice that depended on vagus nerve signaling. Using whole cell patch clamp recordings, we demonstrated that bilirubin directly activates vagal afferents and increases afferent excitability. Ongoing experiments are investigating the specific receptors through which bilirubin alters neuronal activity as drugs targeting these proteins may prove effective analgesics for SCD pain. In summary, these experiments are the first to demonstrate that sickle cell gut contents drive chronic widespread pain in this disease, and furthermore, are the first to identify gut metabolites that should be targeted for chronic SCD pain management. National Institutes of Health: K99HL155791(KS), R01HL142657(AB), R01NS070711 CS).
Skin Resident Memory T Cell Dysfunction In The Tibia Fracture Model Of Complex Regional Pain Syndrome

The Journal of Pain

2023 Apr 01

Wickman, J;Shenoda, B;Van Duyne, R;Kline, Z;Ajit, S;
| DOI: 10.1016/j.jpain.2023.02.060

Complex regional pain syndrome (CRPS) is a debilitating chronic pain disorder that with no effective treatments. Several microRNA (miRNA) are commonly dysregulated in CRPS patient and tibia fracture model of CRPS (TFM) mice, including miR-25 which is associated with positive treatment outcomes in patients. Interestingly, these miRNAs are predicted to target several genes critical to resident memory T cell (Trm) function. We hypothesize that miRNA dysregulation contributes to the pathology of CRPS through regulation of skin Trm development and maintenance. Therapeutic strategies blocking Trm development or maintenance may be beneficial in treating this disease. Whole blood samples were obtained from CRPS patients or healthy controls. miRNA and gene expression changes in blood and T cells were assessed by qPCR. Animals were treated with therapeutic agents after development of TFM and monitored for behavioral outcomes and T cell populations of collected tissues were analyzed at different time points by flow cytometry. There was an inverse correlation of miR-25 and CD69 in blood samples from CRPS patients compared to controls. TFM hindlimb skin shows increased epidermal CD8+ and CD4+ Trm, dermal CD4+ Trm. Epidermal CD8+ Trm, dermal CD4+ Trm are marked by increases in CD103+CD49a+ populations, and along with splenic CD8+ Tem show increased CD122+ cells. Therapeutic studies are ongoing. miRNA signatures in CRPS patients and TFM mice show common alterations which are capable of regulating CD69, a core Trm marker. TFM hindlimb skin shows increased pathological Trm populations and treatments targeting Trm development and maintenance may be beneficial in treating CRPS. 1RF1NS130481-01.
Evaluation of a panel of therapeutic antibody clinical candidates for efficacy against SARS-CoV-2 in Syrian hamsters

Antiviral research

2023 Mar 30

Cong, Y;Mucker, EM;Perry, DL;Dixit, S;Kollins, E;Byrum, R;Huzella, L;Kim, R;Josleyn, M;Kwilas, S;Stefan, C;Shoemaker, CJ;Koehler, J;Coyne, S;Delp, K;Liang, J;Drawbaugh, D;Hischak, A;Hart, R;Postnikova, E;Vaughan, N;Asher, J;St Claire, M;Hanson, J;Schmaljohn, C;Eakin, AE;Hooper, JW;Holbrook, MR;
PMID: 37003305 | DOI: 10.1016/j.antiviral.2023.105589

The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?