Journal of translational medicine
Secchi, C;Belli, M;Harrison, TNH;Swift, J;Ko, C;Duleba, AJ;Stupack, D;Chang, RJ;Shimasaki, S;
PMID: 34654452 | DOI: 10.1186/s12967-021-03103-x
In the ovarian follicle, the Theca Cells (TCs) have two main functions: preserving morphological integrity and, importantly, secreting steroid androgen hormones. TCs express the essential enzyme 17α-hydroxylase/17,20-desmolase (CYP17), which permits the conversion of pregnenolone and progesterone into androgens. Dysregulation of CYP17 enzyme activity due to an intrinsic ovarian defect is hypothesized to be a cause of hyperandrogenism in women. Androgen excess is observed in women with polycystic ovary syndrome (PCOS) resulting from excess endogenous androgen production, and in transgender males undergoing exogenous testosterone therapy after female sex assignment at birth. However, the molecular and morphological effects of Cyp17 overexpression and androgen excess on folliculogenesis is unknown.In this work, seeking a comprehensive profiling of the local outcomes of the androgen excess in the ovary, we generated a transgenic mouse model (TC17) with doxycycline (Dox)-induced Cyp17 overexpression in a local and temporal manner. TC17 mice were obtained by a combination of the Tet-dependent expression system and the Cre/LoxP gene control system.Ovaries of Dox-treated TC17 mice overexpressed Cyp17 specifically in TCs, inducing high testosterone levels. Surprisingly, TC17 ovarian morphology resembled the human ovarian features of testosterone-treated transgender men (partially impaired folliculogenesis, hypertrophic or luteinized stromal cells, atretic follicles, and collapsed clusters). We additionally assessed TC17 fertility denoting a perturbation of the normal reproductive functions (e.g., low pregnancy rate and numbers of pups per litter). Finally, RNAseq analysis permitted us to identify dysregulated genes (Lhcgr, Fshr, Runx1) and pathways (Extra Cellular Matrix and Steroid Synthesis).Our novel mouse model is a versatile tool to provide innovative insights into study the effects of Cyp17 overexpression and hyperandrogenism in the ovary.
Behavioural brain research
Van Savage, J;Avegno, EM;
PMID: 37352979 | DOI: 10.1016/j.bbr.2023.114553
Designer receptors exclusively activated by designer drugs (DREADDs) are a promising tool for analyzing neural circuitry, and improved DREADD-selective ligands continue to be developed. Relative to clozapine-N-oxide (CNO), JHU37160 is a selective DREADD agonist recently shown to exhibit higher blood brain barrier penetrance and DREADD selectivity in vivo; however, relatively few studies have characterized the behavioral effects of systemic JHU37160 administration in animals. Here, we report a dose-dependent anxiogenic effect of systemic JHU37160 in male Wistar and Long-Evans rats, regardless of DREADD expression, with no impact on locomotor behavior. These results suggest that high dose (1 mg/kg) JHU37160 should be avoided when performing chemogenetic experiments designed to evaluate circuit manipulation on anxiety-like behavior in rats.
Kwon, DY;Xu, B;Hu, P;Zhao, YT;Beagan, JA;Nofziger, JH;Cui, Y;Phillips-Cremins, JE;Blendy, JA;Wu, H;Zhou, Z;
PMID: 35013139 | DOI: 10.1038/s41467-021-27571-3
Although the synaptic alterations associated with the stress-related mood disorder major depression has been well-documented, the underlying transcriptional mechanisms remain poorly understood. Here, we perform complementary bulk nuclei- and single-nucleus transcriptome profiling and map locus-specific chromatin interactions in mouse neocortex to identify the cell type-specific transcriptional changes associated with stress-induced behavioral maladaptation. We find that cortical excitatory neurons, layer 2/3 neurons in particular, are vulnerable to chronic stress and acquire signatures of gene transcription and chromatin structure associated with reduced neuronal activity and expression of Yin Yang 1 (YY1). Selective ablation of YY1 in cortical excitatory neurons enhances stress sensitivity in both male and female mice and alters the expression of stress-associated genes following an abbreviated stress exposure. These findings demonstrate how chronic stress impacts transcription in cortical excitatory neurons and identify YY1 as a regulator of stress-induced maladaptive behavior in mice.
Daily coordination of orexinergic gating in the rat superior colliculus-Implications for intrinsic clock activities in the visual system
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Chrobok, L;Jeczmien-Lazur, JS;Bubka, M;Pradel, K;Klekocinska, A;Klich, JD;Ridla Rahim, A;Myung, J;Kepczynski, M;Lewandowski, MH;
PMID: 34533886 | DOI: 10.1096/fj.202100779RR
The orexinergic system delivers excitation for multiple brain centers to facilitate behavioral arousal, with its malfunction resulting in narcolepsy, somnolence, and notably, visual hallucinations. Since the circadian clock underlies the daily arousal, a timed coordination is expected between the orexin system and its target subcortical visual system, including the superior colliculus (SC). Here, we use a combination of electrophysiological, immunohistochemical, and molecular approaches across 24 h, together with the neuronal tract-tracing methods to investigate the daily coordination between the orexin system and the rodent SC. Higher orexinergic input was found to occur nocturnally in the superficial layers of the SC, in time for nocturnal silencing of spontaneous firing in this visual brain area. We identify autonomous daily and circadian expression of clock genes in the SC, which may underlie these day-night changes. Additionally, we establish the lateral hypothalamic origin of the orexin innervation to the SC and that the SC neurons robustly respond to orexin A via OX2 receptor in both excitatory and GABAA receptor-dependent inhibitory manners. Together, our evidence elucidates the combination of intrinsic and extrinsic clock mechanisms that shape the daily function of the visual layers of the SC.
Molecular and cellular neurosciences
Sanetra, AM;Palus-Chramiec, K;Chrobok, L;Jeczmien-Lazur, JS;Klich, JD;Lewandowski, MH;
PMID: 37295578 | DOI: 10.1016/j.mcn.2023.103873
A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.
International journal of molecular sciences
Stoltenborg, I;Peris-Sampedro, F;Schéle, E;Le May, MV;Adan, RAH;Dickson, SL;
PMID: 35008985 | DOI: 10.3390/ijms23010559
The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
Stem cell reviews and reports
Liu, H;Sun, Z;Luo, G;Hu, Y;Ruan, H;Tu, B;Li, J;Fan, C;
PMID: 37284914 | DOI: 10.1007/s12015-023-10562-w
Heterotopic ossification (HO) is one of the most intractable conditions following injury to the musculoskeletal system. In recent years, much attention has been paid to the role of lncRNA in musculoskeletal disorders, but its role in HO was still unclear. Therefore, this study attempted to determine the role of lncRNA MEG3 in the formation of post-traumatic HO and further explore the underlying mechanisms.On the basis of high-throughput sequencing and qPCR validation, elevated expression of the lncRNA MEG3 was shown during traumatic HO formation. Accordingly, in vitro experiments demonstrated that lncRNA MEG3 promoted aberrant osteogenic differentiation of tendon-derived stem cells (TDSCs). Mechanical exploration through RNA pulldown, luciferase reporter gene assay and RNA immunoprecipitation assay identified the direct binding relationship between miR-129-5p and MEG3, or miR-129-5p and TCF4. Further rescue experiments confirmed the miR-129-5p/TCF4/β-catenin axis to be downstream molecular cascade responsible for the osteogenic-motivating effects of MEG3 on the TDSCs. Finally, experiments in a mouse burn/tenotomy model corroborated the promoting effects of MEG3 on the formation of HO through the miR-129-5p/TCF4/β-catenin axis.Our study demonstrated that the lncRNA MEG3 promoted osteogenic differentiation of TDSCs and thus the formation of heterotopic ossification, which could be a potential therapeutic target.
Kim, Y;Jang, H;Seo, K;Kim, JH;Lee, B;Cho, HM;Kim, HJ;Yang, E;Kim, H;Gim, JA;Park, Y;Ryu, JR;Sun, W;
PMID: 34919810 | DOI: 10.1016/j.stemcr.2021.11.005
Human pluripotent stem cells (hPSCs) grow as colonies with epithelial-like features including cell polarity and position-dependent features that contribute to symmetry breaking during development. Our study provides evidence that hPSC colonies exhibit position-dependent differences in apical structures and functions. With this apical difference, edge cells were preferentially labeled with amphipathic dyes, which enabled separation of edge and center cells by fluorescence-activated cell sorting. Transcriptome comparison between center and edge cells showed differential expression of genes related to apicobasal polarization, cell migration, and endocytosis. Accordingly, different kinematics and mechanical dynamics were found between center and edge cells, and perturbed actin dynamics disrupted the position-dependent apical polarity. In addition, our dye-labeling approach could be utilized to sort out a certain cell population in differentiated micropatterned colonies. In summary, hPSC colonies have position-dependent differences in apical structures and properties, and actin dynamics appear to play an important role in the establishment of this position-dependent cell polarity.
Nanotube-like processes facilitate material transfer between photoreceptors
Kalargyrou, AA;Basche, M;Hare, A;West, EL;Smith, AJ;Ali, RR;Pearson, RA;
PMID: 34494703 | DOI: 10.15252/embr.202153732
Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non-neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons ("material transfer") was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open-end NT-like processes. These processes permit the transfer of cytoplasmic and membrane-bound molecules in culture and after transplantation and can mediate gain-of-function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT-like processes forming between sensory neurons in culture and in vivo.
Fractalkine signaling regulates oligodendroglial cell genesis from SVZ precursor cells
Watson, AES;de Almeida, MMA;Dittmann, NL;Li, Y;Torabi, P;Footz, T;Vetere, G;Galleguillos, D;Sipione, S;Cardona, AE;Voronova, A;
PMID: 34270934 | DOI: 10.1016/j.stemcr.2021.06.010
Neural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine. Exogenous fractalkine directly enhances OPC and oligodendrocyte genesis from SVZ NPCs in vitro. Infusion of fractalkine into the lateral ventricle of adult NPC lineage-tracing mice leads to increased newborn OPC and oligodendrocyte formation in vivo. We also show that OPCs secrete fractalkine and that inhibition of endogenous fractalkine signaling reduces oligodendrocyte formation in vitro. Finally, we show that fractalkine signaling regulates oligodendrogenesis in cerebellar slices ex vivo. In summary, we demonstrate a novel role for fractalkine signaling in regulating oligodendrocyte genesis from postnatal CNS precursor cells.
The polyamine regulator AMD1 up-regulates spermine levels to drive epidermal differentiation
The Journal of investigative dermatology
Rahim, AB;Lim, HK;Ru Tan, CY;Jia, L;Leo, VI;Uemura, T;Hardman-Smart, J;Common, JEA;Lim, TC;Bellanger, S;Paus, R;Igarashi, K;Yang, H;Vardy, LA;
PMID: 33984347 | DOI: 10.1016/j.jid.2021.01.039
Maintaining tissue homeostasis depends on a balance of cell proliferation, differentiation and apoptosis. Within the epidermis the levels of the polyamines putrescine, spermidine and spermine are altered in many different skin conditions yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, AMD1, as a crucial regulator of keratinocyte differentiation. AMD1 protein is upregulated on differentiation and highly expressed in the suprabasal layers of the human epidermis. During keratinocyte differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown/inhibition of AMD1 results in reduced spermine levels and inhibition of keratinocyte differentiation. Supplementing AMD1-knockdown keratinocytes with exogenous spermidine/spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signalling proteins that drive keratinocyte differentiation including KLF4 and ZNF750. These findings demonstrate that human keratinocytes use controlled changes in polyamine levels to modulate gene expression to drive cellular behaviour changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or be used in the treatment of hyper-proliferative skin disorders.
Samms, RJ;Cosgrove, R;Snider, BM;Furber, EC;Droz, BA;Briere, DA;Dunbar, J;Dogra, M;Alsina-Fernandez, J;Borner, T;De Jonghe, BC;Hayes, MR;Coskun, T;Sloop, KW;Emmerson, PJ;Ai, M;
PMID: 35499381 | DOI: 10.2337/db21-0848
The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of Peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor agonism reduces PYY-induced nausea-like behavior in mice. We found that central and peripheral administration of a GIPR agonist (GIPRA) reduced conditioned taste avoidance (CTA) without affecting hypophagia induced by a PYY analog. The receptors for GIP and PYY (Gipr and Npy2r) were expressed by the same neurons in the area postrema (AP), a brainstem nucleus involved in the detection of aversive stimuli. Peripheral administration of a GIPRA induced neuronal activation (cFOS) in the AP. Further, whole-brain cFOS analyses indicated that PYY-induced CTA was associated with augmented neuronal activity in the parabrachial nucleus (PBN), an area of the brain that relays aversive/emetic stimuli to brain regions that control feeding behavior. Importantly, GIPR agonism reduced PYY-mediated neuronal activity in the PBN, providing a potential mechanistic explanation for how GIPRA treatment reduces PYY-induced nausea-like behavior. Together, our study provides a novel mechanism by which GIP-based therapeutics may benefit the tolerability of weight loss agents.