Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (5)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • FOS (7) Apply FOS filter
  • DRD1 (5) Apply DRD1 filter
  • (-) Remove TBD filter TBD (5)
  • Gad2 (4) Apply Gad2 filter
  • Chat (4) Apply Chat filter
  • Slc17a6 (4) Apply Slc17a6 filter
  • DRD2 (3) Apply DRD2 filter
  • GLI1 (3) Apply GLI1 filter
  • SLC32A1 (3) Apply SLC32A1 filter
  • Sst (3) Apply Sst filter
  • TAC1 (3) Apply TAC1 filter
  • vGlut2 (3) Apply vGlut2 filter
  • SARS-CoV-2 (3) Apply SARS-CoV-2 filter
  • Gad1 (2) Apply Gad1 filter
  • egfp (2) Apply egfp filter
  • Rbfox3 (2) Apply Rbfox3 filter
  • TH (2) Apply TH filter
  • PECAM1 (2) Apply PECAM1 filter
  • CHRM4 (2) Apply CHRM4 filter
  • Cx3cr1 (2) Apply Cx3cr1 filter
  • Adora2a (2) Apply Adora2a filter
  • Pdyn (2) Apply Pdyn filter
  • C3 (2) Apply C3 filter
  • Slc17a7 (2) Apply Slc17a7 filter
  • mCherry (2) Apply mCherry filter
  • Ace2 (2) Apply Ace2 filter
  • Cre (2) Apply Cre filter
  • Piezo2 (1) Apply Piezo2 filter
  • SOX2 (1) Apply SOX2 filter
  • Gal (1) Apply Gal filter
  • Axin2 (1) Apply Axin2 filter
  • GAPDH (1) Apply GAPDH filter
  • CD68 (1) Apply CD68 filter
  • Htr7 (1) Apply Htr7 filter
  • C1qa (1) Apply C1qa filter
  • CNR1 (1) Apply CNR1 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL13 (1) Apply CXCL13 filter
  • Mc4r (1) Apply Mc4r filter
  • PDGFB (1) Apply PDGFB filter
  • FGFR2 (1) Apply FGFR2 filter
  • FOXC2 (1) Apply FOXC2 filter
  • GLP1R (1) Apply GLP1R filter
  • GPR52 (1) Apply GPR52 filter
  • PVALB (1) Apply PVALB filter
  • HES1 (1) Apply HES1 filter
  • HIF1A (1) Apply HIF1A filter
  • AGRP (1) Apply AGRP filter
  • Oxt (1) Apply Oxt filter
  • Penk (1) Apply Penk filter

Product

  • (-) Remove RNAscope Multiplex Fluorescent v2 filter RNAscope Multiplex Fluorescent v2 (5)

Research area

  • Neuroscience (2) Apply Neuroscience filter
  • Stem Cells (2) Apply Stem Cells filter
  • Development (1) Apply Development filter
  • lncRNA (1) Apply lncRNA filter

Category

  • Publications (5) Apply Publications filter
Multiplex In Situ Hybridization of the Primate and Rodent DRG and Spinal Cord

Neuromethods

2022 May 27

Ferreira, D;Arokiaraj, C;Seal, R;
| DOI: 10.1007/978-1-0716-2039-7_3

Fluorescence in situ hybridization (FISH) has become an important tool in laboratory experimentation by providing a qualitative or semi-quantitative technique to detect nucleic acids across different sample types and species. It also serves as a promising platform for the discovery of novel RNA biomarkers and the development of molecular diagnostic assays. While technologies to detect hundreds or thousands of gene transcripts in situ with single-cell resolution are rapidly coming online, smaller scale FISH analysis continues to be highly useful in neuroscience research. In this chapter, we describe a robust, relatively fast and low cost, turnkey in situ hybridization technology (ISH) to identify one or more RNA targets together with immunohistochemical analyses. Specifically, we present a customized version of the protocol that works particularly well for spinal cord and primary sensory ganglia tissues.
Human Pluripotent Stem Cell-Derived Sensory Neurons: A New Translational Approach to Study Mechanisms of Sensitization

Neuromethods

2022 May 27

Schrenk-Siemens, K;
| DOI: 10.1007/978-1-0716-2039-7_8

The milestone achievement of reprogramming a human somatic cell into a pluripotent stem cell by Yamanaka and Takahashi in 2007 has changed the stem cell research landscape tremendously. Their discovery opened the unprecedented opportunity to work with human-induced pluripotent stem cells and the differentiated progeny thereof, without major ethical restrictions. Additionally, the new method offers the possibility to generate pluripotent stem cells from patients with various genetic diseases which is of great importance (a) to understand the basic mechanisms of a specific disease in a human cellular context and (b) to help find suitable therapies for the persons concerned. In individual cases, this can even help to develop personalized treatment options. Chronic pain is a disease that affects roughly one in five people worldwide, but its onset is rarely based upon genetic alterations. Nevertheless, the work with sensory-like neurons derived from human pluripotent stem cells has become a more widely used tool also in the field of pain research, as during the past years several differentiation procedures have been published that describe the generation of different types of sensory-like neurons and their useful contribution to studying mechanisms of sensitization. Especially also to complement and verify cellular and molecular mechanisms identified in rodent model systems, the model of choice for decades. Although a sole cellular system is not able to mimic a disease as complex as pain, it is a valid tool to understand basic mechanisms of sensitization in specific subsets of human neurons that might be at the onset of the disease. In addition, the creativity of basic researchers and the more and more advanced available technologies will most likely find ways to implement the derived human cells in more complex networks. In this chapter, I want to introduce a selection of published differentiation strategies that result in the generation of human sensory-like neurons. Additionally, I will point out some studies whose results helped to further understand pain-related mechanisms and which were conducted using the aforementioned differentiation procedures.
lncRNA MEG3 Promotes Osteogenic Differentiation of Tendon Stem Cells Via the miR-129-5p/TCF4/β-Catenin Axis and thus Contributes to Trauma-Induced Heterotopic Ossification

Stem cell reviews and reports

2023 Jun 07

Liu, H;Sun, Z;Luo, G;Hu, Y;Ruan, H;Tu, B;Li, J;Fan, C;
PMID: 37284914 | DOI: 10.1007/s12015-023-10562-w

Heterotopic ossification (HO) is one of the most intractable conditions following injury to the musculoskeletal system. In recent years, much attention has been paid to the role of lncRNA in musculoskeletal disorders, but its role in HO was still unclear. Therefore, this study attempted to determine the role of lncRNA MEG3 in the formation of post-traumatic HO and further explore the underlying mechanisms.On the basis of high-throughput sequencing and qPCR validation, elevated expression of the lncRNA MEG3 was shown during traumatic HO formation. Accordingly, in vitro experiments demonstrated that lncRNA MEG3 promoted aberrant osteogenic differentiation of tendon-derived stem cells (TDSCs). Mechanical exploration through RNA pulldown, luciferase reporter gene assay and RNA immunoprecipitation assay identified the direct binding relationship between miR-129-5p and MEG3, or miR-129-5p and TCF4. Further rescue experiments confirmed the miR-129-5p/TCF4/β-catenin axis to be downstream molecular cascade responsible for the osteogenic-motivating effects of MEG3 on the TDSCs. Finally, experiments in a mouse burn/tenotomy model corroborated the promoting effects of MEG3 on the formation of HO through the miR-129-5p/TCF4/β-catenin axis.Our study demonstrated that the lncRNA MEG3 promoted osteogenic differentiation of TDSCs and thus the formation of heterotopic ossification, which could be a potential therapeutic target.
An Efficient Method to Detect Messenger RNA (mRNA) in the Inner Ear by RNAscope In Situ Hybridization

Neuromethods

2022 Jan 01

Ghosh, S;Casey, G;Stansak, K;Thapa, P;Walters, B;
| DOI: 10.1007/978-1-0716-2022-9_6

Biological processes are largely governed by the RNA molecules and resulting peptides that are encoded by an organism’s DNA. For decades, our understanding of biology has been vastly enhanced through study of the distribution and abundance of RNA molecules. Studies of the inner ear are no exception, and approaches like qPCR, RNA-seq, and in situ hybridization (ISH) have contributed greatly to our understanding of inner ear development and function. While qPCR and RNA-seq provide sensitive and broad measures of RNA quantity, they can be limited in their ability to resolve RNA localization. Thus, ISH remains a vital technique for inner ear studies. However, traditional ISH approaches can be technically challenging, time-consuming, suffer from high background, and are generally limited to the investigation of only a single RNA of interest. Recent advances in ISH approaches have overcome many of these limitations allowing for speed, high signal-to-noise, and the ability to perform multiplexed ISH where several transcripts of interest can be visualized in the same tissue or section. One such approach is RNAscope which is a commercially available option that allows for ease of use and, for many transcripts, the ability to achieve absolute quantification of RNA molecules per cell. Here we outline RNAscope methods that have been optimized for inner ear (and related) tissues and allow for relatively rapid labeling of RNA transcripts of interest in fixed tissues. Furthermore, these methods elucidate how RNAscope labeling can be imaged with brightfield or fluorescence microscopy, how it allows for quantification as well as localization, how it can be multiplexed to visualize multiple transcripts simultaneously, and how it can be combined with immunocytochemistry so that RNA and proteins may be visualized in the same sample.
DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression

Development (Cambridge, England)

2022 Jun 01

Price, JD;Lindtner, S;Ypsilanti, A;Binyameen, F;Johnson, JR;Newton, BW;Krogan, NJ;Rubenstein, JLR;
PMID: 35695185 | DOI: 10.1242/dev.199508

In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?