Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1023)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (39) Apply TBD filter
  • Slc17a6 (28) Apply Slc17a6 filter
  • SLC32A1 (27) Apply SLC32A1 filter
  • vGlut2 (25) Apply vGlut2 filter
  • FOS (23) Apply FOS filter
  • Gad1 (22) Apply Gad1 filter
  • TH (22) Apply TH filter
  • tdTomato (22) Apply tdTomato filter
  • VGAT (20) Apply VGAT filter
  • Lgr5 (18) Apply Lgr5 filter
  • GFAP (17) Apply GFAP filter
  • Slc17a7 (17) Apply Slc17a7 filter
  • Axin2 (15) Apply Axin2 filter
  • DRD1 (15) Apply DRD1 filter
  • Sst (15) Apply Sst filter
  • Gad2 (15) Apply Gad2 filter
  • DRD2 (14) Apply DRD2 filter
  • SARS-CoV-2 (14) Apply SARS-CoV-2 filter
  • Rbfox3 (13) Apply Rbfox3 filter
  • PVALB (12) Apply PVALB filter
  • PDGFRA (12) Apply PDGFRA filter
  • Chat (12) Apply Chat filter
  • Pomc (12) Apply Pomc filter
  • egfp (11) Apply egfp filter
  • GLI1 (11) Apply GLI1 filter
  • CCK (10) Apply CCK filter
  • AGRP (10) Apply AGRP filter
  • PECAM1 (10) Apply PECAM1 filter
  • Penk (10) Apply Penk filter
  • OPRM1 (10) Apply OPRM1 filter
  • ACTA2 (9) Apply ACTA2 filter
  • Trpv1 (9) Apply Trpv1 filter
  • Cre (9) Apply Cre filter
  • Tmem119 (9) Apply Tmem119 filter
  • Sox9 (8) Apply Sox9 filter
  • CALCA (8) Apply CALCA filter
  • GLP1R (8) Apply GLP1R filter
  • MKI67 (8) Apply MKI67 filter
  • LEPR (8) Apply LEPR filter
  • WNT2 (8) Apply WNT2 filter
  • Sftpc (8) Apply Sftpc filter
  • Olig2 (8) Apply Olig2 filter
  • CD68 (7) Apply CD68 filter
  • Wnt5a (7) Apply Wnt5a filter
  • Spp1 (7) Apply Spp1 filter
  • Aldh1l1 (7) Apply Aldh1l1 filter
  • Npy (7) Apply Npy filter
  • PPIB (7) Apply PPIB filter
  • Phox2b (7) Apply Phox2b filter
  • Aif1 (7) Apply Aif1 filter

Product

  • (-) Remove RNAscope Multiplex Fluorescent Assay filter RNAscope Multiplex Fluorescent Assay (1023)

Research area

  • Neuroscience (486) Apply Neuroscience filter
  • Development (179) Apply Development filter
  • Cancer (90) Apply Cancer filter
  • Inflammation (80) Apply Inflammation filter
  • Stem Cells (44) Apply Stem Cells filter
  • Stem cell (33) Apply Stem cell filter
  • Metabolism (30) Apply Metabolism filter
  • Covid (28) Apply Covid filter
  • Infectious (26) Apply Infectious filter
  • CGT (16) Apply CGT filter
  • Aging (14) Apply Aging filter
  • lncRNA (13) Apply lncRNA filter
  • Other: Heart (11) Apply Other: Heart filter
  • Pain (11) Apply Pain filter
  • Other: Metabolism (10) Apply Other: Metabolism filter
  • Alzheimer's Disease (9) Apply Alzheimer's Disease filter
  • Behavior (9) Apply Behavior filter
  • behavioral (9) Apply behavioral filter
  • Other (9) Apply Other filter
  • Regeneration (9) Apply Regeneration filter
  • HIV (8) Apply HIV filter
  • Infectious Disease (8) Apply Infectious Disease filter
  • LncRNAs (8) Apply LncRNAs filter
  • Obesity (8) Apply Obesity filter
  • Addiction (7) Apply Addiction filter
  • Endocrinology (7) Apply Endocrinology filter
  • Fibrosis (7) Apply Fibrosis filter
  • Kidney (7) Apply Kidney filter
  • Liver (7) Apply Liver filter
  • Psychiatry (7) Apply Psychiatry filter
  • Stress (7) Apply Stress filter
  • Bone (6) Apply Bone filter
  • diabetes (6) Apply diabetes filter
  • Injury (6) Apply Injury filter
  • Lung (6) Apply Lung filter
  • Sleep (6) Apply Sleep filter
  • Anxiety (5) Apply Anxiety filter
  • Feeding Behavior (5) Apply Feeding Behavior filter
  • Heart (5) Apply Heart filter
  • Other: Endocrinology (5) Apply Other: Endocrinology filter
  • Progenitor Cells (5) Apply Progenitor Cells filter
  • Immunotherapy (4) Apply Immunotherapy filter
  • Memory (4) Apply Memory filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Parkinson's Disease (4) Apply Parkinson's Disease filter
  • Reproductive Biology (4) Apply Reproductive Biology filter
  • Schizophrenia (4) Apply Schizophrenia filter
  • Single Cell (4) Apply Single Cell filter
  • Skin (4) Apply Skin filter

Category

  • Publications (1023) Apply Publications filter
A neural circuit for excessive feeding driven by environmental context in mice

Nature neuroscience

2021 Jun 24

Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9

Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Delineation of an insula-BNST circuit engaged by struggling behavior that regulates avoidance in mice

Nature communications

2021 Jun 11

Luchsinger, JR;Fetterly, TL;Williford, KM;Salimando, GJ;Doyle, MA;Maldonado, J;Simerly, RB;Winder, DG;Centanni, SW;
PMID: 34117229 | DOI: 10.1038/s41467-021-23674-z

Active responses to stressors involve motor planning, execution, and feedback. Here we identify an insular cortex to BNST (insula→BNST) circuit recruited during restraint stress-induced active struggling that modulates affective behavior. We demonstrate that activity in this circuit tightly follows struggling behavioral events and that the size of the fluorescent sensor transient reports the duration of the struggle event, an effect that fades with repeated exposure to the homotypic stressor. Struggle events are associated with enhanced glutamatergic- and decreased GABAergic signaling in the insular cortex, indicating the involvement of a larger circuit. We delineate the afferent network for this pathway, identifying substantial input from motor- and premotor cortex, somatosensory cortex, and the amygdala. To begin to dissect these incoming signals, we examine the motor cortex input, and show that the cells projecting from motor regions to insular cortex are engaged shortly before struggle event onset. This study thus demonstrates a role for the insula→BNST pathway in monitoring struggling activity and regulating affective behavior.
An Atlas of Vagal Sensory Neurons and Their Molecular Specialization.

Cell Rep

2019 May 21

Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P.
PMID: 31116992 | DOI: 10.1016/j.celrep.2019.04.096

Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems.

Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming.

Commun Biol

2020 Apr 23

Sol�-Boldo L, Raddatz G, Sch�tz S, Mallm JP, Rippe K, Lonsdorf AS, Rodr�guez-Paredes M, Lyko F
PMID: 32327715 | DOI: 10.1038/s42003-020-0922-4

Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.
PNOCARC Neurons Promote Hyperphagia and Obesity upon High-Fat-Diet Feeding

Neuron

2020 Apr 15

Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, Klemm P, Mykytiuk V, Widdershooven PJM, Vesting AJ, Grzelka K, Min�re M, Cremer AL, Xu J, Korotkova T, Lowell BB, Zeilhofer HU, Backes H, Fenselau H, Wunderlich FT, Kloppenburg P, Br�ning JC
PMID: 32302532 | DOI: 10.1016/j.neuron.2020.03.022

Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia
A CRE/DRE dual recombinase transgenic mouse reveals synaptic zinc-mediated thalamocortical neuromodulation

Science advances

2023 Jun 09

Kouvaros, S;Bizup, B;Solis, O;Kumar, M;Ventriglia, E;Curry, FP;Michaelides, M;Tzounopoulos, T;
PMID: 37294760 | DOI: 10.1126/sciadv.adf3525

Synaptic zinc is a neuromodulator that shapes synaptic transmission and sensory processing. The maintenance of synaptic zinc is dependent on the vesicular zinc transporter, ZnT3. Hence, the ZnT3 knockout mouse has been a key tool for studying the mechanisms and functions of synaptic zinc. However, the use of this constitutive knockout mouse has notable limitations, including developmental, compensatory, and brain and cell type specificity issues. To overcome these limitations, we developed and characterized a dual recombinase transgenic mouse, which combines the Cre and Dre recombinase systems. This mouse allows for tamoxifen-inducible Cre-dependent expression of exogenous genes or knockout of floxed genes in ZnT3-expressing neurons and DreO-dependent region and cell type-specific conditional ZnT3 knockout in adult mice. Using this system, we reveal a neuromodulatory mechanism whereby zinc release from thalamic neurons modulates N-methyl-d-aspartate receptor activity in layer 5 pyramidal tract neurons, unmasking previously unknown features of cortical neuromodulation.
Epigenetically regulated RNA-binding proteins signify malaria hypnozoite dormancy

Cell reports

2023 Jun 30

Toenhake, CG;Voorberg-van der Wel, A;Wu, H;Kanyal, A;Nieuwenhuis, IG;van der Werff, NM;Hofman, SO;Zeeman, AM;Kocken, CHM;Bártfai, R;
PMID: 37392389 | DOI: 10.1016/j.celrep.2023.112727

Dormancy enables relapsing malaria parasites, such as Plasmodium vivax and cynomolgi, to survive unfavorable conditions. It is enabled by hypnozoites, parasites remaining quiescent inside hepatocytes before reactivating and establishing blood-stage infection. We integrate omics approaches to explore gene-regulatory mechanisms underlying hypnozoite dormancy. Genome-wide profiling of activating and repressing histone marks identifies a few genes that get silenced by heterochromatin during hepatic infection of relapsing parasites. By combining single-cell transcriptomics, chromatin accessibility profiling, and fluorescent in situ RNA hybridization, we show that these genes are expressed in hypnozoites and that their silencing precedes parasite development. Intriguingly, these hypnozoite-specific genes mainly encode proteins with RNA-binding domains. We hence hypothesize that these likely repressive RNA-binding proteins keep hypnozoites in a developmentally competent but dormant state and that heterochromatin-mediated silencing of the corresponding genes aids reactivation. Exploring the regulation and exact function of these proteins hence could provide clues for targeted reactivation and killing of these latent pathogens.
Mettl14-mediated m6A modification ensures the cell-cycle progression of late-born retinal progenitor cells

Cell reports

2023 Jun 01

Li, L;Sun, Y;Davis, AE;Shah, SH;Hamed, LK;Wu, MR;Lin, CH;Ding, JB;Wang, S;
PMID: 37269288 | DOI: 10.1016/j.celrep.2023.112596

Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N6-methyladenosine (m6A) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing m6A, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. m6A sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for m6A, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of m6A and potent inhibitor of RPC cell-cycle progression.
Single-cell chromatin accessibility of developing murine pancreas identifies cell state-specific gene regulatory programs

Molecular metabolism

2023 May 11

de la O, S;Yao, X;Chang, S;Liu, Z;Sneddon, JB;
PMID: 37178817 | DOI: 10.1016/j.molmet.2023.101735

Numerous studies have characterized the existence of cell subtypes, along with their corresponding transcriptional profiles, within the developing mouse pancreas. The upstream mechanisms that initiate and maintain gene expression programs across cell states, however, remain largely unknown. Here, we generate single-nucleus ATAC-Sequencing data of developing murine pancreas and perform an integrated, multi-omic analysis of both chromatin accessibility and RNA expression to describe the chromatin landscape of the developing pancreas at both E14.5 and E17.5 at single-cell resolution. We identify candidate transcription factors regulating cell fate and construct gene regulatory networks of active transcription factor binding to regulatory regions of downstream target genes. This work serves as a valuable resource for the field of pancreatic biology in general and contributes to our understanding of lineage plasticity among endocrine cell types. In addition, these data identify which epigenetic states should be represented in the differentiation of stem cells to the pancreatic beta cell fate to best recapitulate in vitro the gene regulatory networks that are critical for progression along the beta cell lineage in vivo.
Estradiol regulates leptin sensitivity to control feeding via hypothalamic d1

Cell metabolism

2023 Mar 07

González-García, I;García-Clavé, E;Cebrian-Serrano, A;Le Thuc, O;Contreras, RE;Xu, Y;Gruber, T;Schriever, SC;Legutko, B;Lintelmann, J;Adamski, J;Wurst, W;Müller, TD;Woods, SC;Pfluger, PT;Tschöp, MH;Fisette, A;García-Cáceres, C;
PMID: 36889283 | DOI: 10.1016/j.cmet.2023.02.004

Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (d1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, d1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct d1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via d1, thereby contributing to the sexual dimorphism in diet-induced obesity.
FGF21 counteracts alcohol intoxication by activating the noradrenergic nervous system

Cell metabolism

2023 Mar 07

Choi, M;Schneeberger, M;Fan, W;Bugde, A;Gautron, L;Vale, K;Hammer, RE;Zhang, Y;Friedman, JM;Mangelsdorf, DJ;Kliewer, SA;
PMID: 36889282 | DOI: 10.1016/j.cmet.2023.02.005

Animals that consume fermenting fruit and nectar are at risk of exposure to ethanol and the detrimental effects of inebriation. In this report, we show that the hormone FGF21, which is strongly induced by ethanol in murine and human liver, stimulates arousal from intoxication without changing ethanol catabolism. Mice lacking FGF21 take longer than wild-type littermates to recover their righting reflex and balance following ethanol exposure. Conversely, pharmacologic FGF21 administration reduces the time needed for mice to recover from ethanol-induced unconsciousness and ataxia. FGF21 did not counteract sedation caused by ketamine, diazepam, or pentobarbital, indicating specificity for ethanol. FGF21 mediates its anti-intoxicant effects by directly activating noradrenergic neurons in the locus coeruleus region, which regulates arousal and alertness. These results suggest that this FGF21 liver-brain pathway evolved to protect against ethanol-induced intoxication and that it might be targeted pharmaceutically for treating acute alcohol poisoning.
Zebrafish pigment cells develop directly from persistent highly multipotent progenitors

Nature communications

2023 Mar 06

Subkhankulova, T;Camargo Sosa, K;Uroshlev, LA;Nikaido, M;Shriever, N;Kasianov, AS;Yang, X;Rodrigues, FSLM;Carney, TJ;Bavister, G;Schwetlick, H;Dawes, JHP;Rocco, A;Makeev, VJ;Kelsh, RN;
PMID: 36878908 | DOI: 10.1038/s41467-023-36876-4

Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.

Pages

  • « first
  • ‹ previous
  • …
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?