Ding, CY;Ding, YT;Ji, H;Wang, YY;Zhang, X;Yin, DM;
PMID: 37147705 | DOI: 10.1186/s13578-023-01032-4
Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed.Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated.In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum.Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w
Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Zhou, K;Xu, H;Lu, S;Jiang, S;Hou, G;Deng, X;He, M;Zhu, Y;
PMID: 36271048 | DOI: 10.1038/s41467-022-33843-3
The nucleus accumbens (NAc) is critical in mediating reward seeking and is also involved in negative emotion processing, but the cellular and circuitry mechanisms underlying such opposing behaviors remain elusive. Here, using the recently developed AAV1-mediated anterograde transsynaptic tagging technique in mice, we show that NAc neurons receiving basolateral amygdala inputs (NAcBLA) promote positive reinforcement via disinhibiting dopamine neurons in the ventral tegmental area (VTA). In contrast, NAc neurons receiving paraventricular thalamic inputs (NAcPVT) innervate GABAergic neurons in the lateral hypothalamus (LH) and mediate aversion. Silencing the synaptic output of NAcBLA neurons impairs reward seeking behavior, while silencing of NAcPVT or NAcPVT→LH pathway abolishes aversive symptoms of opiate withdrawal. Our results elucidate the afferent-specific circuit architecture of the NAc in controlling reward and aversion.
Chen X, Liu Z, Ma C, Ma L, Liu X.
PMID: - | DOI: 10.3389/fnbeh.2019.00110
Parvalbumin (PV) expressing GABAergic interneurons provide large source of GABA to spiny projection neurons (SPNs) in the striatum. However, the roles of PV+ interneurons in the regulation of SPNs in the ventral striatum and emotional states are largely unknown. Here, we investigated whether stimulation of ventral striatal (accumbal) PV+ interneurons would drive emotional valence in mice. We found that during conditioned place preference (CPP) training, activation of accumbal PV+ interneurons evoked place preference while suppressing them resulted in conditioned place aversion (CPA). Activation of PV+interneurons during place conditioning increased Fos expression in SPNs in the direct pathway (dSPNs) and impaired lithium chloride-induced CPA. Activation of dSPNs and SPNs in the indirect pathway (iSPNs) induced CPP and CPA, respectively; conversely, suppression of dSPNs or iSPNs induced CPA or CPP. In addition, activation or suppression of calretinin-expressing (CR) GABAergic interneurons did not induce place preference or aversion. These data suggest that PV+ interneurons can bidirectionally determine the emotional valence through their regulation of accumbal SPN activities and raise the possibility that manipulation of PV+ interneuron activity may have the potential to alter emotional valence and treat related mental disorders.
Chen, G;Lai, S;Bao, G;Ke, J;Meng, X;Lu, S;Wu, X;Xu, H;Wu, F;Xu, Y;Xu, F;Bi, GQ;Peng, G;Zhou, K;Zhu, Y;
PMID: 36753418 | DOI: 10.1016/j.celrep.2023.112069
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Biological Psychiatry Global Open Science
Guerri, L;Dobbs, L;da Silva e Silva, D;Meyers, A;Ge, A;Lecaj, L;Djakuduel, C;Islek, D;Hipolito, D;Martinez, A;Shen, P;Marietta, C;Garamszegi, S;Capobianco, E;Jiang, Z;Schwandt, M;Mash, D;Alvarez, V;Goldman, D;
| DOI: 10.1016/j.bpsgos.2022.08.010
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type-II receptor (D2R) availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, Translating Ribosome Affinity Purification (TRAP) was used to purify and analyze the translatome (ribosome-bound mRNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA and cAMP signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 mRNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusion This study provides strong molecular evidence that in addiction inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Teague, C;Picone, J;Wright, W;Browne, C;Silva, G;Futamura, R;Minier-Toribio, A;Estill, M;Ramakrishnan, A;Martinez-Rivera, F;Godino, A;Parise, E;Schmidt, K;Pulido, N;Lorsch, Z;Kim, J;Shen, L;Neve, R;Dong, Y;Nestler, E;Hamilton, P;
| DOI: 10.1016/j.biopsych.2022.07.022
Background Over the course of chronic drug use, brain transcriptional neuroadaptation are thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within mouse NAc. Methods To query the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified CRISPR/dCas9 constructs, capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. Results We observe that CREB binding to the Zfp189 promoter increases Zfp189 expression and diminishes the reinforcing responses to cocaine. We show further that NAc Zfp189 expression is increased within D1 medium spiny neurons (MSNs) in response to acute cocaine, but increased in both D1 and D2 MSNs in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiates electrophysiological activity of D1 and D2 MSNs - recapitulating the known effect of CREB on these neurons. Lastly, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. Conclusions Together, these findings point to the CREB-Zfp189 interaction within NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.
Miller SM, Marcotulli D, Shen A, Zweifel LS.
PMID: 30804529 | DOI: 10.1038/s41593-019-0337-z
Avoidance of innate threats is often in conflict with motivations to engage in exploratory approach behavior. The neural pathways that mediate this approach-avoidance conflict are not well resolved. Here we isolated a population of dopamine D1 receptor (D1R)-expressing neurons within the posteroventral region of the medial amygdala (MeApv) in mice that are activated either during approach or during avoidance of an innate threat stimulus. Distinct subpopulations of MeApv-D1R neurons differentially innervate the ventromedial hypothalamus and bed nucleus of the stria terminalis, and these projections have opposing effects on investigation or avoidance of threatening stimuli. These projections are potently modulated through opposite actions of D1R signaling that bias approach behavior. These data demonstrate divergent pathways in the MeApv that can be differentially weighted toward exploration or evasion of threats.
Wright, KN;Johnson, NL;Dossat, AM;Wilson, JT;Wesson, DW;
PMID: 35101702 | DOI: 10.1016/j.yhbeh.2022.105122
Brain-derived 17β-estradiol (E2) confers rapid effects on neural activity. The tubular striatum (TuS, also called the olfactory tubercle) is both capable of local E2 synthesis due to its abundant expression of aromatase and is a critical locus for odor-guided motivated behavior and odor hedonics. TuS neurons also contain mRNA for estrogen receptors α, β, and the G protein-coupled estrogen receptor. We demonstrate here that mRNA for estrogen receptors appears to be expressed upon TuS dopamine 1 receptor-expressing neurons, suggesting that E2 may play a neuromodulatory role in circuits which are important for motivated behavior. Therefore, we reasoned that E2 in the TuS may influence attraction to urinary odors which are highly attractive. Using whole-body plethysmography, we examined odor-evoked high-frequency sniffing as a measure of odor attaction. Bilateral infusion of the aromatase inhibitor letrozole into the TuS of gonadectomized female adult mice induced a resistance to habituation over successive trials in their investigatory sniffing for female mouse urinary odors, indicative of an enhanced attraction. All males displayed resistance to habituation for female urinary odors, indicative of enhanced attraction that is independent from E2 manipulation. Letrozole's effects were not due to group differences in basal respiration, nor changes in the ability to detect or discriminate between odors (both monomolecular odorants and urinary odors). Therefore, de novo E2 synthesis in the TuS impacts females' but not males' attraction to female urinary odors, suggesting a sex-specific influence of E2 in odor hedonics.
Morris, C;Watkins, D;Shah, N;Pennington, T;Hens, B;Qi, G;Doud, E;Mosley, A;Atwood, B;Baucum, A;
| DOI: 10.1016/j.biopsych.2022.12.008
Background Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder, trichotillomania. Numerous preclinical studies have utilized SAPAP3 deficient mice for understanding the neurobiology of repetitive grooming, suggesting excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect pathway medium spiny neurons (dMSNs and iMSNs, respectively). However, MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigate the MSN subtype-specific roles of the striatal signaling hub protein, spinophilin, in mediating repetitive motor dysfunction associated with mGluR5 function. Methods Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action was measured using our novel conditional spinophilin mouse model that had spinophilin knocked out from striatal dMSNs or/and iMSNs. Results Loss of spinophilin only in iMSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator (VU0360172) without impacting locomotion-relevant behavior. Biochemically, we determined the spinophilin-mGluR5 interaction correlates with grooming behavior and loss of spinophilin shifts mGluR5 interactions from lipid-raft associated proteins toward postsynaptic density (PSD) proteins implicated in psychiatric disorders. Conclusions These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype-specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.
ACS chemical neuroscience
Dagher, M;Perrotta, KA;Erwin, SA;Hachisuka, A;Iyer, R;Masmanidis, SC;Yang, H;Andrews, AM;
PMID: 35312275 | DOI: 10.1021/acschemneuro.1c00715
Targeting neurons with light-driven opsins is widely used to investigate cell-specific responses. We transfected midbrain dopamine neurons with the excitatory opsin Chrimson. Extracellular basal and stimulated neurotransmitter levels in the dorsal striatum were measured by microdialysis in awake mice. Optical activation of dopamine cell bodies evoked terminal dopamine release in the striatum. Multiplexed analysis of dialysate samples revealed that the evoked dopamine was accompanied by temporally coupled increases in striatal 3-methoxytyramine, an extracellular dopamine metabolite, and in serotonin. We investigated a mechanism for dopamine-serotonin interactions involving striatal dopamine receptors. However, the evoked serotonin associated with optical stimulation of dopamine neurons was not abolished by striatal D1- or D2-like receptor inhibition. Although the mechanisms underlying the coupling of striatal dopamine and serotonin remain unclear, these findings illustrate advantages of multiplexed measurements for uncovering functional interactions between neurotransmitter systems. Furthermore, they suggest that the output of optogenetic manipulations may extend beyond opsin-expressing neuronal populations.
Claypool, SM;Behdin, S;Applebey, SV;Orihuel, J;Ma, Z;Reiner, DJ;
PMID: 35768212 | DOI: 10.1523/ENEURO.0496-21.2022
The orbitofrontal cortex (OFC) and piriform cortex (Pir) play a role in fentanyl relapse after food choice-induced voluntary abstinence, a procedure mimicking abstinence because of availability of alternative nondrug rewards. We used in situ hybridization and pharmacology to determine the role of OFC and Pir cannabinoid and dopamine receptors in fentanyl relapse. We trained male and female rats to self-administer food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 µg/kg/infusion) for 12 d (6 h/d). We assessed fentanyl relapse after 12 discrete choice sessions between fentanyl and food (20 trials/d), in which rats voluntarily reduced fentanyl self-administration. We used RNAscope to determine whether fentanyl relapse is associated with activity (indicated by Fos) in OFC and Pir cells expressing Cnr1 [which encodes cannabinoid 1 (CB1) receptors] or Drd1 and Drd2 (which encode dopamine D1 and D2 receptors). We injected a CB1 receptor antagonist or agonist (0.3 or 1.0 µg AM251 or WIN55,212-2/hemisphere) into OFC or a dopamine D1 receptor antagonist (1.0 or 3.0 µg SCH39166/hemisphere) into Pir to determine the effect on fentanyl relapse. Fentanyl relapse was associated with OFC cells co-expressing Fos and Cnr1 and Pir cells co-expressing Fos and Drd1 However, injections of the CB1 receptor antagonist AM251 or agonist WIN55,212-2 into OFC or the dopamine D1 receptor antagonist SCH39166 into Pir had no effect on fentanyl relapse. Fentanyl relapse is associated with activation of Cnr1-expressing OFC cells and Drd1-expressing Pir cells, but pharmacological manipulations do not support causal roles of OFC CB1 receptors or Pir dopamine D1 receptors in fentanyl relapse.