BMPR-2 gates activity-dependent stabilization of primary dendrites during mitral cell remodeling
Aihara, S;Fujimoto, S;Sakaguchi, R;Imai, T;
PMID: 34161760 | DOI: 10.1016/j.celrep.2021.109276
Developing neurons initially form excessive neurites and then remodel them based on molecular cues and neuronal activity. Developing mitral cells in the olfactory bulb initially extend multiple primary dendrites. They then stabilize single primary dendrites while eliminating others. However, the mechanisms underlying selective dendrite remodeling remain elusive. Using CRISPR-Cas9-based knockout screening combined with in utero electroporation, we identify BMPR-2 as a key regulator for selective dendrite stabilization. Bmpr2 knockout and its rescue experiments show that BMPR-2 inhibits LIMK without ligands and thereby permits dendrite destabilization. In contrast, the overexpression of antagonists and agonists indicates that ligand-bound BMPR-2 stabilizes dendrites, most likely by releasing LIMK. Using genetic and FRET imaging experiments, we demonstrate that free LIMK is activated by NMDARs via Rac1, facilitating dendrite stabilization through F-actin formation. Thus, the selective stabilization of primary dendrites is ensured by concomitant inputs of BMP ligands and neuronal activity.
Kurt, G;Kodur, N;Quiles, CR;Reynolds, C;Eagle, A;Mayer, T;Brown, J;Makela, A;Bugescu, R;Seo, HD;Carroll, QE;Daniels, D;Robison, AJ;Mazei-Robison, M;Leinninger, G;
PMID: 35063424 | DOI: 10.1016/j.physbeh.2022.113707
The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts → LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.
Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer
Qiao, Y;Choi, J;Tien, J;Simko, S;Rajendiran, T;Vo, J;Delekta, A;Wang, L;Xiao, L;Hodge, N;Desai, P;Mendoza, S;Juckette, K;Xu, A;Soni, T;Su, F;Wang, R;Cao, X;Yu, J;Kryczek, I;Wang, X;Wang, X;Siddiqui, J;Wang, Z;Bernard, A;Fernandez-Salas, E;Navone, N;Ellison, S;Ding, K;Eskelinen, E;Heath, E;Klionsky, D;Zou, W;Chinnaiyan, A;
| DOI: 10.1038/s43018-021-00237-1
(A) Myc-CaP wild-type (WT) and _Atg5_ knockout (_Atg5_ KO) cells were treated with increasing concentrations of ESK981 for 24 hours. Atg5 and LC3 levels were assessed by western blot from three independent experiments. GAPDH served as a loading control. (B) Representative morphology of vacuolization in Myc-CaP wild-type (WT) and _Atg5_ knockout (_Atg5_ KO) cells after treatment with control or 100 nM ESK981 for 24 hours from three independent experiments. (C) Autophagosome content of Myc-CaP WT and _Atg5_ KO cells were measured by CYTO-ID assay after being treated with increasing concentrations of ESK981 for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated. (D) Mouse cytokine array using Myc-CaP WT and _Atg5_ KO cell supernatant after treatment with 10 ng/ml mouse interferon gamma (mIFNγ) or mIFNγ + 100 nM ESK981 for 24 hours. Differential expression candidate dots are highlighted by boxes. (E) Mouse CXCL10 protein levels were measured by ELISA in Myc-CaP WT and _Atg5_ KO conditioned medium with the indicated treatment for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated. (F) mRNA levels of _Cxcl10_ and _Cxcl9_ were measured by qPCR in Myc-CaP WT and _Atg5_ KO cells with 50 nM or 100 nM ESK981 and 10 ng/ml mIFNγ treatment for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated.
Proc Natl Acad Sci U S A. 2018 Dec 3.
Takahashi A, Nagata M, Gupta A, Matsushita Y, Yamaguchi T, Mizuhashi K, Maki K, Ruellas AC, Cevidanes LS, Kronenberg HM, Ono N, Ono W.
PMID: 30509999 | DOI: 10.1073/pnas.1810200115
Formation of functional skeletal tissues requires highly organized steps of mesenchymal progenitor cell differentiation. The dental follicle (DF) surrounding the developing tooth harbors mesenchymal progenitor cells for various differentiated cells constituting the tooth root–bone interface and coordinates tooth eruption in a manner dependent on signaling by parathyroid hormone-related peptide (PTHrP) and the PTH/PTHrP receptor (PPR). However, the identity of mesenchymal progenitor cells in the DF and how they are regulated by PTHrP-PPR signaling remain unknown. Here, we show that the PTHrP-PPR autocrine signal maintains physiological cell fates of DF mesenchymal progenitor cells to establish the functional periodontal attachment apparatus and orchestrates tooth eruption. A single-cell RNA-seq analysis revealed cellular heterogeneity of PTHrP+ cells, wherein PTHrP+ DF subpopulations abundantly express PPR. Cell lineage analysis using tamoxifen-inducible PTHrP-creER mice revealed that PTHrP+ DF cells differentiate into cementoblasts on the acellular cementum, periodontal ligament cells, and alveolar cryptal bone osteoblasts during tooth root formation. PPR deficiency induced a cell fate shift of PTHrP+ DF mesenchymal progenitor cells to nonphysiological cementoblast-like cells precociously forming the cellular cementum on the root surface associated with up-regulation of Mef2c and matrix proteins, resulting in loss of the proper periodontal attachment apparatus and primary failure of tooth eruption, closely resembling human genetic conditions caused by PPR mutations. These findings reveal a unique mechanism whereby proper cell fates of mesenchymal progenitor cells are tightly maintained by an autocrine system mediated by PTHrP-PPR signaling to achieve functional formation of skeletal tissues.
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Novack, R;Zhang, L;Hoang, LN;Kadhim, M;Ng, TL;Poh, CF;Kevin Ko, YC;
PMID: 36906072 | DOI: 10.1016/j.modpat.2023.100153
The diagnosis of oral epithelial dysplasia is based on the degree of architectural and cytologic atypia in the squamous epithelium. The conventional grading system of mild, moderate, and severe dysplasia is considered by many the gold standard in predicting the risk of malignant transformation. Unfortunately, some low-grade lesions, with or without dysplasia, progress to squamous cell carcinoma (SCC) in short periods. As a result, we are proposing a new approach to characterize oral dysplastic lesions that will help identify lesions at high risk for malignant transformation. We included a total of 203 cases of oral epithelial dysplasia, proliferative verrucous leukoplakia, lichenoid, and commonly observed mucosal reactive lesions to evaluate their p53 immunohistochemical (IHC) staining patterns. We identified 4 wild-type patterns, including scattered basal, patchy basal/parabasal, null-like/basal sparing, mid-epithelial/basal sparing, and 3 abnormal p53 patterns, including overexpression basal/parabasal only, overexpression basal/parabasal to diffuse, and null. All cases of lichenoid and reactive lesions exhibited scattered basal or patchy basal/parabasal patterns, whereas human papillomavirus-associated oral epithelial dysplasia demonstrated null-like/basal sparing or mid-epithelial/basal sparing patterns. Of the oral epithelial dysplasia cases, 42.5% (51/120) demonstrated an abnormal p53 IHC pattern. p53 abnormal oral epithelial dysplasia was significantly more likely to progress to invasive SCC when compared with p53 wild-type oral epithelial dysplasia (21.6% vs 0%, P < .0001). Furthermore, p53 abnormal oral epithelial dysplasia was more likely to have dyskeratosis and/or acantholysis (98.0% vs 43.5%, P < .0001). We propose the term p53 abnormal oral epithelial dysplasia to highlight the importance of utilizing p53 IHC stain to recognize lesions that are at high risk of progression to invasive disease, irrespective of the histologic grade, and propose that these lesions should not be graded using the conventional grading system to avoid delayed management.
Zhang, X;Zhang, BW;Xiang, L;Wu, H;Alexander, SAS;Zhou, P;Dai, MZ;Wang, X;Xiong, W;Zhang, Y;Jin, ZB;Deng, LW;
PMID: 35359806 | DOI: 10.1016/j.isci.2022.104058
Histone methylation, particularly at the H3K4 position, is thought to contribute to the specification of photoreceptor cell fate; however, the mechanisms linking histone methylation with transcription factor transactivation and photoreceptor gene expression have not yet been determined. Here, we demonstrate that MLL5 is abundantly expressed in the mouse retina. Mll5 deficiency impaired electroretinogram responses, alongside attenuated expression of a number of retina genes. Mechanistic studies revealed that MLL5 interacts with the retina-specific transcription factor, CRX, contributing to its binding to photoreceptor-specific gene promoters. Moreover, depletion of MLL5 impairs H3K4 methylation and H3K79 methylation, which subsequently compromises CRX-CBP assembly and H3 acetylation on photoreceptor promoters. Our data support a scenario in which recognition of H3K4 methylation by MLL5 is required for photoreceptor-specific gene transcription through maintaining a permissive chromatin state and proper CRX-CBP recruitment at promoter sites.
Am J Clin Pathol. 2018 Oct 18.
Gibbons-Fideler IS, Nitta H, Murillo A, Tozbikian G, Banks P, Parwani AV, Li Z.
PMID: 30339245 | DOI: 10.1093/ajcp/aqy136
OBJECTIVES:
Either immunohistochemistry (IHC) or in situ hybridization (ISH) can be used to determine human epidermal growth factor receptor 2 (HER2) status. Breast cancers (BCs) with HER2 IHC-negative (IHC-) and ISH-amplified (ISH+) results have been rarely reported but not well studied. We investigated the frequency of HER2 IHC-/ISH+ BCs and their response to anti-HER2 neoadjuvant chemotherapy (NAC).
METHODS:
Seventeen BCs with HER2 IHC-/ISH+ results were identified from 1,107 consecutive invasive BCs (1.5%, 17/1,107).
RESULTS:
Gene protein assay confirmed the original HER2 IHC and ISH results. Increased HER2 RNA level was detected in HER2 IHC-/ISH+ cases compared with HER2 IHC-/ISH- cases. Eight patients had anti-HER2 NAC; three had pathologic complete response, and five had residual tumors.
CONCLUSIONS:
A small percentage of patients (1.5%) showed discordant HER2 IHC and ISH results (IHC-/ISH+) and would have lost the opportunity for potentially beneficial anti-HER2-targeted therapy if only HER2 IHC testing had been used."
Gouilly J, Chen Q, Siewiera J, Cartron G, Levy C, Dubois M, Al-Daccak R, Izopet J, Jabrane-Ferrat N, El Costa H.
PMID: 30420629 | DOI: 10.1038/s41467-018-07200-2
Hepatitis E virus (HEV) infection, particularly HEV genotype 1 (HEV-1), can result in fulminant hepatic failure and severe placental diseases, but mechanisms underlying genotype-specific pathogenicity are unclear and appropriate models are lacking. Here, we model HEV-1 infection ex vivo at the maternal-fetal interface using the decidua basalis and fetal placenta, and compare its effects to the less-pathogenic genotype 3 (HEV-3). We demonstrate that HEV-1 replicates more efficiently than HEV-3 both in tissue explants and stromal cells, produces more infectious progeny virions and causes severe tissue alterations. HEV-1 infection dysregulates the secretion of several soluble factors. These alterations to the cytokine microenvironment correlate with viral load and contribute to the tissue damage. Collectively, this study characterizes an ex vivo model for HEV infection and provides insights into HEV-1 pathogenesis during pregnancy that are linked to high viral replication, alteration of the local secretome and induction of tissue injuries.
Bilger A, King RE, Schroeder JP, Piette JT, Hinshaw LA, Kurth AD, AlRamahi RW, Barthel MV, Ward-Shaw ET, Buehler D, Masters KS, Thibeault SL, Lambert PF
PMID: 32316091 | DOI: 10.3390/v12040450
Human head and neck cancers that develop from the squamous cells of the oropharynx (Oropharyngeal Squamous Cell Carcinomas or OPSCC) are commonly associated with the papillomavirus infection. A papillomavirus infection-based mouse model of oropharyngeal tumorigenesis would be valuable for studying the development and treatment of these tumors. We have developed an efficient system using the mouse papillomavirus (MmuPV1) to generate dysplastic oropharyngeal lesions, including tumors, in the soft palate and the base of the tongue of two immune-deficient strains of mice. To maximize efficiency and safety during infection and endoscopy, we have designed a nose cone for isoflurane-induced anesthesia that takes advantage of a mouse's need to breathe nasally and has a large window for oral manipulations. To reach and infect the oropharynx efficiently, we have repurposed the Greer Pick allergy testing device as a virus delivery tool. We show that the Pick can be used to infect the epithelium of the soft palate and the base of the tongue of mice directly, without prior scarification. The ability to induce and track oropharyngeal papillomavirus-induced tumors in the mouse, easily and robustly, will facilitate the study of oropharyngeal tumorigenesis and potential treatments.
Nature biomedical engineering
You, Y;Tian, Y;Yang, Z;Shi, J;Kwak, KJ;Tong, Y;Estania, AP;Cao, J;Hsu, WH;Liu, Y;Chiang, CL;Schrank, BR;Huntoon, K;Lee, D;Li, Z;Zhao, Y;Zhang, H;Gallup, TD;Ha, J;Dong, S;Li, X;Wang, Y;Lu, WJ;Bahrani, E;Lee, LJ;Teng, L;Jiang, W;Lan, F;Kim, BYS;Lee, AS;
PMID: 36635419 | DOI: 10.1038/s41551-022-00989-w
The success of messenger RNA therapeutics largely depends on the availability of delivery systems that enable the safe, effective and stable translation of genetic material into functional proteins. Here we show that extracellular vesicles (EVs) produced via cellular nanoporation from human dermal fibroblasts, and encapsulating mRNA encoding for extracellular-matrix α1 type-I collagen (COL1A1) induced the formation of collagen-protein grafts and reduced wrinkle formation in the collagen-depleted dermal tissue of mice with photoaged skin. We also show that the intradermal delivery of the mRNA-loaded EVs via a microneedle array led to the prolonged and more uniform synthesis and replacement of collagen in the dermis of the animals. The intradermal delivery of EV-based COL1A1 mRNA may make for an effective protein-replacement therapy for the treatment of photoaged skin.
Coppo, R;Kondo, J;Iida, K;Okada, M;Onuma, K;Tanaka, Y;Kamada, M;Ohue, M;Kawada, K;Obama, K;Inoue, M;
PMID: 36718360 | DOI: 10.1016/j.isci.2023.105962
Dynamic changes in cell properties lead to intratumor heterogeneity; however, the mechanisms of nongenetic cellular plasticity remain elusive. When the fate of each cell from colorectal cancer organoids was tracked through a clonogenic growth assay, the cells showed a wide range of growth ability even within the clonal organoids, consisting of distinct subpopulations; the cells generating large spheroids and the cells generating small spheroids. The cells from the small spheroids generated only small spheroids (S-pattern), while the cells from the large spheroids generated both small and large spheroids (D-pattern), both of which were tumorigenic. Transition from the S-pattern to the D-pattern occurred by various extrinsic triggers, in which Notch signaling and Musashi-1 played a key role. The S-pattern spheroids were resistant to chemotherapy and transited to the D-pattern upon drug treatment through Notch signaling. As the transition is linked to the drug resistance, it can be a therapeutic target.
Berry, N;Ferguson, D;Kempster, S;Hall, J;Ham, C;Jenkins, A;Rannow, V;Giles, E;Leahy, R;Goulding, S;Fernandez, A;Adedeji, Y;Vessillier, S;Rajagopal, D;Prior, S;Le Duff, Y;Hurley, M;Gilbert, S;Fritzsche, M;Mate, R;Rose, N;Francis, RJ;MacLellan-Gibson, K;Suarez-Bonnet, A;Priestnall, S;Almond, N;
PMID: 36333445 | DOI: 10.1038/s41598-022-23339-x
SARS-CoV-2 exhibits a diverse host species range with variable outcomes, enabling differential host susceptibility studies to assess suitability for pre-clinical countermeasure and pathogenesis studies. Baseline virological, molecular and pathological outcomes were determined among multiple species-one Old World non-human primate (NHP) species (cynomolgus macaques), two New World NHP species (red-bellied tamarins; common marmosets) and Syrian hamsters-following single-dose, atraumatic intranasal administration of SARS-CoV-2/Victoria-01. After serial sacrifice 2, 10 and 28-days post-infection (dpi), hamsters and cynomolgus macaques displayed differential virus biodistribution across respiratory, gastrointestinal and cardiovascular systems. Uniquely, New World tamarins, unlike marmosets, exhibited high levels of acute upper airway infection, infectious virus recovery associated with mild lung pathology representing a host previously unrecognized as susceptible to SARS-CoV-2. Across all species, lung pathology was identified post-clearance of virus shedding (antigen/RNA), with an association of virus particles within replication organelles in lung sections analysed by electron microscopy. Disrupted cell ultrastructure and lung architecture, including abnormal morphology of mitochondria 10-28 dpi, represented on-going pathophysiological consequences of SARS-CoV-2 in predominantly asymptomatic hosts. Infection kinetics and host pathology comparators using standardized methodologies enables model selection to bridge differential outcomes within upper and lower respiratory tracts and elucidate longer-term consequences of asymptomatic SARS-CoV-2 infection.