Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (292)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (15) Apply SARS-CoV-2 filter
  • Lgr5 (10) Apply Lgr5 filter
  • TBD (9) Apply TBD filter
  • HPV E6/E7 (6) Apply HPV E6/E7 filter
  • MALAT1 (5) Apply MALAT1 filter
  • COL1A1 (5) Apply COL1A1 filter
  • Runx2 (5) Apply Runx2 filter
  • Wnt6 (4) Apply Wnt6 filter
  • CXCL10 (4) Apply CXCL10 filter
  • Wnt2b (4) Apply Wnt2b filter
  • Wnt9b (4) Apply Wnt9b filter
  • OLFM4 (4) Apply OLFM4 filter
  • SHH (4) Apply SHH filter
  • Wnt3 (4) Apply Wnt3 filter
  • ZIKV (4) Apply ZIKV filter
  • V-nCoV2019-S (4) Apply V-nCoV2019-S filter
  • ACTA2 (3) Apply ACTA2 filter
  • Wnt16 (3) Apply Wnt16 filter
  • Wnt4 (3) Apply Wnt4 filter
  • Axin2 (3) Apply Axin2 filter
  • Sox9 (3) Apply Sox9 filter
  • Rspo3 (3) Apply Rspo3 filter
  • Wnt5a (3) Apply Wnt5a filter
  • ESR1 (3) Apply ESR1 filter
  • GLI1 (3) Apply GLI1 filter
  • HOTAIR (3) Apply HOTAIR filter
  • Bmp2 (3) Apply Bmp2 filter
  • Col2a1 (3) Apply Col2a1 filter
  • WNT2 (3) Apply WNT2 filter
  • Ihh (3) Apply Ihh filter
  • HPV-HR18 (3) Apply HPV-HR18 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt7a (2) Apply Wnt7a filter
  • MYO10 (2) Apply MYO10 filter
  • Wnt7b (2) Apply Wnt7b filter
  • Dmp1 (2) Apply Dmp1 filter
  • Rspo2 (2) Apply Rspo2 filter
  • CDH1 (2) Apply CDH1 filter
  • HES1 (2) Apply HES1 filter
  • Cpt1a (2) Apply Cpt1a filter
  • Wnt11 (2) Apply Wnt11 filter
  • Wnt3a (2) Apply Wnt3a filter
  • Wnt5b (2) Apply Wnt5b filter
  • Wnt8a (2) Apply Wnt8a filter
  • Wnt8b (2) Apply Wnt8b filter
  • Wnt9a (2) Apply Wnt9a filter
  • LYPD1 (2) Apply LYPD1 filter
  • NOTUM (2) Apply NOTUM filter
  • POLR2A (2) Apply POLR2A filter

Product

  • (-) Remove RNAscope 2.5 HD Brown Assay filter RNAscope 2.5 HD Brown Assay (292)

Research area

  • Cancer (88) Apply Cancer filter
  • Neuroscience (38) Apply Neuroscience filter
  • Inflammation (33) Apply Inflammation filter
  • Development (29) Apply Development filter
  • Covid (24) Apply Covid filter
  • HPV (22) Apply HPV filter
  • Infectious (21) Apply Infectious filter
  • Infectious Disease (16) Apply Infectious Disease filter
  • Other (12) Apply Other filter
  • Stem Cells (12) Apply Stem Cells filter
  • lncRNA (9) Apply lncRNA filter
  • Reproduction (7) Apply Reproduction filter
  • CGT (3) Apply CGT filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • Kidney (3) Apply Kidney filter
  • LncRNAs (3) Apply LncRNAs filter
  • Metabolism (3) Apply Metabolism filter
  • Other: Reproductive Biology (3) Apply Other: Reproductive Biology filter
  • Stem cell (3) Apply Stem cell filter
  • therapeutics (3) Apply therapeutics filter
  • Developmental (2) Apply Developmental filter
  • HIV (2) Apply HIV filter
  • Lung (2) Apply Lung filter
  • Other: Immunology (2) Apply Other: Immunology filter
  • Other: Lung (2) Apply Other: Lung filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Pain (2) Apply Pain filter
  • Aging (1) Apply Aging filter
  • Bone (1) Apply Bone filter
  • diabetes (1) Apply diabetes filter
  • Endocrinology (1) Apply Endocrinology filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Immuno (1) Apply Immuno filter
  • Immuno-Oncology (1) Apply Immuno-Oncology filter
  • Immunology (1) Apply Immunology filter
  • Infectious diseases (1) Apply Infectious diseases filter
  • Liver (1) Apply Liver filter
  • Lupus (1) Apply Lupus filter
  • Other: Adaptive Immunity (1) Apply Other: Adaptive Immunity filter
  • Other: Bone (1) Apply Other: Bone filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Methods (1) Apply Other: Methods filter
  • Other: Single-cell transcriptomics (1) Apply Other: Single-cell transcriptomics filter
  • Parasite (1) Apply Parasite filter
  • polycystic ovarian syndrome (1) Apply polycystic ovarian syndrome filter
  • Reproductive Health (1) Apply Reproductive Health filter
  • Skin (1) Apply Skin filter
  • Vaccine (1) Apply Vaccine filter

Category

  • Publications (292) Apply Publications filter
A single cell survey of the microbial impacts on the mouse small intestinal epithelium

Gut microbes

2022 Aug 08

Tsang, DKL;Wang, RJ;De Sa, O;Ayyaz, A;Foerster, EG;Bayer, G;Goyal, S;Trcka, D;Ghoshal, B;Wrana, JL;Girardin, SE;Philpott, DJ;
PMID: 35939622 | DOI: 10.1080/19490976.2022.2108281

The small intestinal epithelial barrier inputs signals from the gut microbiota in order to balance physiological inflammation and tolerance, and to promote homeostasis. Understanding the dynamic relationship between microbes and intestinal epithelial cells has been a challenge given the cellular heterogeneity associated with the epithelium and the inherent difficulty of isolating and identifying individual cell types. Here, we used single-cell RNA sequencing of small intestinal epithelial cells from germ-free and specific pathogen-free mice to study microbe-epithelium crosstalk at the single-cell resolution. The presence of microbiota did not impact overall cellular composition of the epithelium, except for an increase in Paneth cell numbers. Contrary to expectations, pattern recognition receptors and their adaptors were not induced by the microbiota but showed concentrated expression in a small proportion of epithelial cell subsets. The presence of the microbiota induced the expression of host defense- and glycosylation-associated genes in distinct epithelial cell compartments. Moreover, the microbiota altered the metabolic gene expression profile of epithelial cells, consequently inducing mTOR signaling thereby suggesting microbe-derived metabolites directly activate and regulate mTOR signaling. Altogether, these findings present a resource of the homeostatic transcriptional and cellular impact of the microbiota on the small intestinal epithelium.
MmuPV1-Induced Cutaneous Squamous Cell Carcinoma Arises Preferentially from Lgr5+ Epithelial Progenitor Cells

Viruses

2022 Aug 11

Moreno, R;Buehler, D;Lambert, PF;
PMID: 36016373 | DOI: 10.3390/v14081751

Murine papillomavirus, MmuPV1, causes natural infections in laboratory mice that can progress to squamous cell carcinoma (SCC) making it a useful preclinical model to study the role of papillomaviruses in cancer. Papillomavirus can infect cells within hair follicles, which contain multiple epithelial progenitor cell populations, including Lgr5+ progenitors, and transgenic mice expressing human papillomavirus oncogenes develop tumors derived from Lgr5 progenitors. We therefore tested the hypothesis that Lgr5+ progenitors contribute to neoplastic lesions arising in skins infected with MmuPV1 by performing lineage tracing experiments. Ears of 6-8-week-old Lgr5-eGFP-IRES-CreERT2/Rosa26LSLtdTomato mice were treated topically with 4-OH Tamoxifen to label Lgr5+ progenitor cells and their progeny with tdTomato and, 72 h later, infected with MmuPV1. Four months post-infection, tissue at the infection site was harvested for histopathological analysis and immunofluorescence to determine the percentage of tdTomato+ cells within the epithelial lesions caused by MmuPV1. Squamous cell dysplasia showed a low percentage of tdTomato+ cells (7%), indicating that it arises primarily from non-Lgr5 progenitor cells. In contrast, cutaneous SCC (cSCC) was substantially more positive for tdTomato+ cells (42%), indicating that cSCCs preferentially arise from Lgr5+ progenitors. Biomarker analyses of dysplasia vs. cSCC revealed further differences consistent with cSCC arising from LGR5+ progenitor cells.
Molecular and cytological profiling of biological aging of mouse cochlear inner and outer hair cells

Cell reports

2022 Apr 12

Liu, H;Giffen, KP;Chen, L;Henderson, HJ;Cao, TA;Kozeny, GA;Beisel, KW;Li, Y;He, DZ;
PMID: 35417713 | DOI: 10.1016/j.celrep.2022.110665

Age-related hearing loss (ARHL) negatively impacts quality of life in the elderly population. The prevalent cause of ARHL is loss of mechanosensitive cochlear hair cells (HCs). The molecular and cellular mechanisms of HC degeneration remain poorly understood. Using RNA-seq transcriptomic analyses of inner and outer HCs isolated from young and aged mice, we show that HC aging is associated with changes in key molecular processes, including transcription, DNA damage, autophagy, and oxidative stress, as well as genes related to HC specialization. At the cellular level, HC aging is characterized by loss of stereocilia, shrinkage of HC soma, and reduction in outer HC mechanical properties, suggesting that functional decline in mechanotransduction and cochlear amplification precedes HC loss and contributes to ARHL. Our study reveals molecular and cytological profiles of aging HCs and identifies genes such as Sod1, Sirt6, Jund, and Cbx3 as biomarkers and potential therapeutic targets for ameliorating ARHL.
Disruption of the crypt niche promotes outgrowth of mutated colorectal tumor stem cells

JCI insight

2022 Mar 08

Klingler, S;Hsu, KS;Hua, G;Martin, ML;Adileh, M;Baslan, T;Zhang, Z;Paty, PB;Fuks, Z;Brown, AM;Kolesnick, R;
PMID: 35260534 | DOI: 10.1172/jci.insight.153793

Recent data establish a logarithmic expansion of leucine rich repeat containing G protein coupled receptor 5-positive (Lgr5+) colonic epithelial stem cells (CESCs) in human colorectal cancer (CRC). Complementary studies using the murine 2-stage azoxymethane-dextran sulfate sodium (AOM-DSS) colitis-associated tumor model indicate early acquisition of Wnt pathway mutations drives CESC expansion during adenoma progression. Here, subdivision of the AOM-DSS model into in vivo and in vitro stages revealed DSS induced physical separation of CESCs from stem cell niche cells and basal lamina, a source of Wnt signals, within hours, disabling the stem cell program. While AOM delivery in vivo under non-adenoma-forming conditions yielded phenotypically normal mucosa and organoids derived thereof, niche injury ex vivo by progressive DSS dose escalation facilitated outgrowth of Wnt-independent dysplastic organoids. These organoids contained 10-fold increased Lgr5+ CESCs with gain-of-function Wnt mutations orthologous to human CRC driver mutations. We posit CRC originates by niche injury-induced outgrowth of normally suppressed mutated stem cells, consistent with models of adaptive oncogenesis.
Digital Spatial Profiling of Collapsing Glomerulopathy

Kidney international

2022 Feb 25

Smith, KD;Prince, DK;Henriksen, K;Nicosia, RF;Alpers, CE;Akilesh, S;
PMID: 35227689 | DOI: 10.1016/j.kint.2022.01.033

Collapsing glomerulopathy is a histologically distinct variant of focal and segmental glomerulosclerosis that presents with heavy proteinuria and portends a poor prognosis. Collapsing glomerulopathy can be triggered by viral infections such as HIV or SARS-CoV-2. Transcriptional profiling of collapsing glomerulopathy lesions is difficult since only a few glomeruli may exhibit this histology within a kidney biopsy and the mechanisms driving this heterogeneity are unknown. Therefore, we used recently developed digital spatial profiling (DSP) technology which permits quantification of mRNA at the level of individual glomeruli. Using DSP, we profiled 1,852 transcripts in glomeruli isolated from formalin fixed paraffin embedded sections from HIV or SARS-CoV-2 infected patients with biopsy-confirmed collapsing glomerulopathy and used normal biopsy sections as controls. Even though glomeruli with collapsing features appeared histologically similar across both groups of patients by light microscopyhe increased resolution of DSP uncovered intra- and inter-patient heterogeneity in glomerular transcriptional profiles that were missed in early laser capture microdissection studies of pooled glomeruli. Focused validation using immunohistochemistry and RNA in situ hybridization showed good concordance with DSP results. Thus, DSP represents a powerful method to dissect transcriptional programs of pathologically discernible kidney lesions.
Epigenetic imprinting alterations as effective diagnostic biomarkers for early-stage lung cancer and small pulmonary nodules

Clinical epigenetics

2021 Dec 14

Zhou, J;Cheng, T;Li, X;Hu, J;Li, E;Ding, M;Shen, R;Pineda, JP;Li, C;Lu, S;Yu, H;Sun, J;Huang, W;Wang, X;Si, H;Shi, P;Liu, J;Chang, M;Dou, M;Shi, M;Chen, X;Yung, RC;Wang, Q;Zhou, N;Bai, C;
PMID: 34906185 | DOI: 10.1186/s13148-021-01203-5

Early lung cancer detection remains a clinical challenge for standard diagnostic biopsies due to insufficient tumor morphological evidence. As epigenetic alterations precede morphological changes, expression alterations of certain imprinted genes could serve as actionable diagnostic biomarkers for malignant lung lesions.Using the previously established quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) method, elevated aberrant allelic expression of imprinted genes GNAS, GRB10, SNRPN and HM13 was observed in lung cancers over benign lesions and normal controls, which were pathologically confirmed among histologically stained normal, paracancerous and malignant tissue sections. Based on the differential imprinting signatures, a diagnostic grading model was built on 246 formalin-fixed and paraffin-embedded (FFPE) surgically resected lung tissue specimens, tested against 30 lung cytology and small biopsy specimens, and blindly validated in an independent cohort of 155 patients. The QCIGISH diagnostic model demonstrated 99.1% sensitivity (95% CI 97.5-100.0%) and 92.1% specificity (95% CI 83.5-100.0%) in the blinded validation set. Of particular importance, QCIGISH achieved 97.1% sensitivity (95% CI 91.6-100.0%) for carcinoma in situ to stage IB cancers with 100% sensitivity and 91.7% specificity (95% CI 76.0-100.0%) noted for pulmonary nodules with diameters ≤ 2 cm.Our findings demonstrated the diagnostic value of epigenetic imprinting alterations as highly accurate translational biomarkers for a more definitive diagnosis of suspicious lung lesions.
Non-productive angiogenesis disassembles Aß plaque-associated blood vessels

Nature communications

2021 May 25

Alvarez-Vergara, MI;Rosales-Nieves, AE;March-Diaz, R;Rodriguez-Perinan, G;Lara-Ureña, N;Ortega-de San Luis, C;Sanchez-Garcia, MA;Martin-Bornez, M;Gómez-Gálvez, P;Vicente-Munuera, P;Fernandez-Gomez, B;Marchena, MA;Bullones-Bolanos, AS;Davila, JC;Gonzalez-Martinez, R;Trillo-Contreras, JL;Sanchez-Hidalgo, AC;Del Toro, R;Scholl, FG;Herrera, E;Trepel, M;Körbelin, J;Escudero, LM;Villadiego, J;Echevarria, M;de Castro, F;Gutierrez, A;Rabano, A;Vitorica, J;Pascual, A;
PMID: 34035282 | DOI: 10.1038/s41467-021-23337-z

The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.
A Murine Calvarial Defect Model for the Investigation of the Osteogenic Potential of Fetal Umbilical Cord Stem Cells in Alveolar Cleft Repair

Journal of Oral and Maxillofacial Surgery

2022 Sep 01

Stanton, E;Sanchez, J;Kondra, K;Jimenez, C;Urata, M;Hammoudeh, J;
| DOI: 10.1016/j.joms.2022.07.012

Background: The standard graft material for alveolar cleft repair (ACR) is autogenous iliac crest. However, a promising alternative potential graft adjunct - newborn human umbilical cord mesenchymal stem cells (h-UCMSC) - has yet to be explored in vivo. Their capacity for selfrenewal, multipotent differentiation, and proliferation allows h-UCMSC to be harnessed for regenerative medicine. Our study seeks to evaluate the efficacy of using tissue-derived hUCMSC and their osteogenic capabilities in a murine model to improve ACR. Methods: Foxn1 mice were separated into three groups with the following calvarial defects: (1) no-treatment (empty defect; n=6), (2) poly (D,L-lactide-co-glycolide) (PLGA) scaffold (n=6), and (3) h-UCMSC with PLGA (n=4). Bilateral 2-mm diameter parietal bone critical-sized defects were created using a dental drill. Micro-CT imaging occurred at 1, 2, 3, and 4 weeks postoperatively. The mice were euthanized 4 weeks postoperatively for RNAscope analysis, immunohistochemistry, and histology. Results: No mice experienced complications during the follow-up period. Micro-CT and histology demonstrated that the no-treatment (1) and PLGA-only (2) defects remained patent without significant defect size differences across groups. In contrast, the h-UCMSC with PLGA group (3) had significantly greater bone fill on micro-CT and histology. Conclusions: We demonstrate a successful calvarial defect model for the investigation of hUCMSC-mediated osteogenesis and bone repair. Furthermore, evidence reveals that PLGA alone has neither short-term effects on bone formation nor any unwanted side effects, making it an 3 attractive scaffold. Further investigation using h-UCMSC with PLGA in larger animals is warranted to advance future translation to patients requiring ACR. Clinical Relevance Statement: Our results demonstrate a successful murine calvarial defect model for the investigation of h-UCMSC-mediated osteogenesis and bone repair and provide preliminary evidence for the safe and efficacious use of this graft adjunct in alveolar cleft repair.
Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells

Stem Cells

2022 Jan 19

Figeac, F;Tencerova, M;Ali, D;Andersen, T;Appadoo, D;Kerckhofs, G;Ditzel, N;Kowal, J;Rauch, A;Kassem, M;
| DOI: 10.1093/stmcls/sxab011

The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high fat diet (HFD) and insulinopenia induced by treatment with streptozotocin (STZ), we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by - 28.4±7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06±38.71%, and increased density of SCA1+ (+74.99± 29.19%) but not Runx2 +osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82± 33.05%), senescence gene signature (≈106.66± 34.03%) and LAMIN B1 - senescent cell density (+225.18± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9± 6.2% which was inversely correlated with glucose levels (R 2=0.48, p<0.004) and callus adipose tissue area (R 2=0.3711, p<0.01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycaemia per se and not just insulin levels is detrimental for bone healing.
Induction of gastric cancer by successive oncogenic activation in the corpus

Gastroenterology

2021 Aug 12

Douchi, D;Yamamura, A;Matsuo, J;Melissa Lim, YH;Nuttonmanit, N;Shimura, M;Suda, K;Chen, S;ShuChin, P;Kohu, K;Abe, T;Shioi, G;Kim, G;Shabbir, A;Srivastava, S;Unno, M;Bok-Yan So, J;Teh, M;Yeoh, KG;Huey Chuang, LS;Ito, Y;
PMID: 34391772 | DOI: 10.1053/j.gastro.2021.08.013

Metaplasia and dysplasia in the corpus are reportedly derived from dedifferentiation of chief cells. However, the cellular origin of metaplasia and cancer remained uncertain. Therefore, we investigated whether pepsinogen C-transcript expressing cells (PGC-transcript expressing cells) represent the cellular origin of metaplasia and cancer using a novel Pgc-specific CreERT2 recombinase mouse model.We generated a Pgc-mCherry-IRES-CreERT2 (Pgc-CreERT2) knock-in mouse model. Pgc-CreERT2/+ and Rosa-EYFP mice were crossed to generate Pgc-CreERT2/Rosa-EYFP (Pgc-CreERT2/YFP) mice. Gastric tissues were collected, followed by lineage-tracing experiments, histological and immunofluorescence staining. We further established Pgc-CreERT2;KrasG12D/+ mice and investigated whether PGC-transcript expressing cells are responsible for the precancerous state in gastric glands. To investigate cancer development from PGC-transcript expressing cells with activated Kras, inactivated Apc and Trp53 signaling pathways, we crossed Pgc-CreERT2/+ mice with conditional KrasG12D, Apcflox, Trp53flox mice.Expectedly, mCherry mainly labeled chief cells in the Pgc-CreERT2 mice. However, mCherry was also detected throughout the neck cell and isthmal stem/progenitor regions, albeit at lower levels. In the Pgc-CreERT2;KrasG12D/+ mice, PGC-transcript expressing cells with KrasG12D/+ mutation presented pseudopyloric metaplasia. The early induction of proliferation at the isthmus may reflect the ability of isthmal progenitors to react rapidly to Pgc-driven KrasG12D/+ oncogenic mutation. Furthermore, Pgc-CreERT2;KrasG12D/+;Apcflox/flox mice presented intramucosal dysplasia/carcinoma, while Pgc-CreERT2;KrasG12D/+;Apcflox/flox;Trp53flox/flox mice presented invasive and metastatic gastric carcinoma.The Pgc-CreERT2 knock-in mouse is an invaluable tool to study the effects of successive oncogenic activation in the mouse corpus. Time-course observations can be made regarding the responses of isthmal and chief cells to oncogenic insults. We can observe stomach-specific tumorigenesis from the beginning to metastatic development.
VSTM2A Overexpression Is a Sensitive and Specific Biomarker for Mucinous Tubular and Spindle Cell Carcinoma (MTSCC) of the Kidney.

Am J Surg Pathol.

2018 Dec 01

Wang L, Zhang Y, Chen YB, Skala SL, Al-Ahmadie HA, Wang X, Cao X, Veeneman BA, Chen J, Cieślik M, Qiao Y, Su F, Vats P, Siddiqui J, Xiao H, Sadimin ET, Epstein JI, Zhou M, Sangoi AR, Trpkov K, Osunkoya AO, Giannico GA, McKenney JK, Argani P, Tickoo SK, Reuter VE, Chinnaiyan AM, Dhanasekaran SM, Mehra R.
PMID: 30285995 | DOI: 10.1097/PAS.0000000000001150

Our recent study revealed recurrent chromosomal losses and somatic mutations of genes in the Hippo pathway in mucinous tubular and spindle cell carcinoma (MTSCC). Here, we performed an integrative analysis of 907 renal cell carcinoma (RCC) samples (combined from The Cancer Genome Atlas and in-house studies) and the Knepper data set of microdissected rat nephrons. We identified VSTM2A and IRX5 as novel cancer-specific and lineage-specific biomarkers in MTSCC. We then assessed their expression by RNA in situ hybridization (ISH) in 113 tumors, including 33 MTSCC, 40 type 1 papillary RCC, 8 type 2 papillary RCC, 2 unclassified RCC, 15 clear cell RCC, and 15 chromophobe RCC. Sensitivity and specificity were calculated as the area under the receiver operating characteristics curve (AUC). All MTSCC tumors demonstrated moderate to high expression of VSTM2A (mean ISH score=255). VSTM2A gene expression assessed by RNA sequencing strongly correlated with VSTM2A ISH score (r=0.81, P=0.00016). The majority of non-MTSCC tumors demonstrated negative or low expression of VSTM2A. IRX5, nominated as a lineage-specific biomarker, showed moderate to high expression in MTSCC tumors (mean ISH score=140). IRX5 gene expression assessed by RNA sequencing strongly correlated with IRX5 ISH score (r=0.69, P=0.00291). VSTM2A (AUC: 99.2%) demonstrated better diagnostic efficacy than IRX5 (AUC: 87.5%), and may thus serve as a potential diagnostic marker to distinguish tumors with overlapping histology. Furthermore, our results suggest MTSCC displays an overlapping phenotypic expression pattern with the loop of Henle region of normal nephrons.

Cellular and molecular atlas of the placenta from a COVID-19 pregnant woman infected at midgestation highlights the defective impacts on foetal health

Cell proliferation

2022 Feb 09

Chen, J;Du, L;Wang, F;Shao, X;Wang, X;Yu, W;Bi, S;Chen, D;Pan, X;Zeng, S;Huang, L;Liang, Y;Li, Y;Chen, R;Xue, F;Li, X;Wang, S;Zhuang, M;Liu, M;Lin, L;Yan, H;He, F;Yu, L;Jiang, Q;Xiong, Z;Zhang, L;Cao, B;Wang, YL;Chen, D;
PMID: 35141964 | DOI: 10.1111/cpr.13204

The impacts of the current COVID-19 pandemic on maternal and foetal health are enormous and of serious concern. However, the influence of SARS-CoV-2 infection at early-to-mid gestation on maternal and foetal health remains unclear.Here, we report the follow-up study of a pregnant woman of her whole infective course of SARS-CoV-2, from asymptomatic infection at gestational week 20 to mild and then severe illness state, and finally cured at Week 24. Following caesarean section due to incomplete uterine rupture at Week 28, histological examinations on the placenta and foetal tissues as well as single-cell RNA sequencing (scRNA-seq) for the placenta were performed.Compared with the gestational age-matched control placentas, the placenta from this COVID-19 case exhibited more syncytial knots and lowered expression of syncytiotrophoblast-related genes. The scRNA-seq analysis demonstrated impaired trophoblast differentiation, activation of antiviral and inflammatory CD8 T cells, as well as the tight association of increased inflammatory responses in the placenta with complement over-activation in macrophages. In addition, levels of several inflammatory factors increased in the placenta and foetal blood.These findings illustrate a systematic cellular and molecular signature of placental insufficiency and immune activation at the maternal-foetal interface that may be attributed to SARS-CoV-2 infection at the midgestation stage, which highly suggests the extensive care for maternal and foetal outcomes in pregnant women suffering from COVID-19.

Pages

  • « first
  • ‹ previous
  • …
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?