Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (497)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (30) Apply HPV E6/E7 filter
  • Lgr5 (20) Apply Lgr5 filter
  • PD-L1 (9) Apply PD-L1 filter
  • Axin2 (6) Apply Axin2 filter
  • FGFR1 (6) Apply FGFR1 filter
  • IFN-γ (5) Apply IFN-γ filter
  • HER2 (5) Apply HER2 filter
  • OLFM4 (5) Apply OLFM4 filter
  • MALAT1 (4) Apply MALAT1 filter
  • Wnt4 (4) Apply Wnt4 filter
  • Wnt5a (4) Apply Wnt5a filter
  • MYC (4) Apply MYC filter
  • OLFM4 (4) Apply OLFM4 filter
  • PTEN (4) Apply PTEN filter
  • TERT (4) Apply TERT filter
  • TNF-α (4) Apply TNF-α filter
  • TGF-β (4) Apply TGF-β filter
  • IL-17A (4) Apply IL-17A filter
  • HPV (4) Apply HPV filter
  • AR-V7 (4) Apply AR-V7 filter
  • Wnt7a (3) Apply Wnt7a filter
  • AR (3) Apply AR filter
  • BRCA1 (3) Apply BRCA1 filter
  • MET (3) Apply MET filter
  • CXCL10 (3) Apply CXCL10 filter
  • HEY2 (3) Apply HEY2 filter
  • HOTAIR (3) Apply HOTAIR filter
  • IL-10 (3) Apply IL-10 filter
  • H19 (3) Apply H19 filter
  • HIV (3) Apply HIV filter
  • Lgr4 (3) Apply Lgr4 filter
  • COL11A1 (3) Apply COL11A1 filter
  • ASPM (3) Apply ASPM filter
  • IL-8 (3) Apply IL-8 filter
  • VEGF (3) Apply VEGF filter
  • Il-6 (3) Apply Il-6 filter
  • MERS-CoV (3) Apply MERS-CoV filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • LINC00473 (3) Apply LINC00473 filter
  • PD-l2 (3) Apply PD-l2 filter
  • HIV-1 (3) Apply HIV-1 filter
  • TNFA (3) Apply TNFA filter
  • CD274 (2) Apply CD274 filter
  • TGFB1 (2) Apply TGFB1 filter
  • Wnt10a (2) Apply Wnt10a filter
  • Wnt10b (2) Apply Wnt10b filter
  • Wnt16 (2) Apply Wnt16 filter
  • Wnt1 (2) Apply Wnt1 filter
  • Wnt6 (2) Apply Wnt6 filter
  • Wnt7b (2) Apply Wnt7b filter

Product

  • (-) Remove RNAscope 2.0 Assay filter RNAscope 2.0 Assay (497)

Research area

  • Cancer (244) Apply Cancer filter
  • Infectious Disease (87) Apply Infectious Disease filter
  • Other (72) Apply Other filter
  • Neuroscience (50) Apply Neuroscience filter
  • Inflammation (38) Apply Inflammation filter
  • lncRNA (36) Apply lncRNA filter
  • HPV (34) Apply HPV filter
  • Stem Cells (28) Apply Stem Cells filter
  • Developmental (14) Apply Developmental filter
  • diabetes (14) Apply diabetes filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • Development (9) Apply Development filter
  • Stem cell (5) Apply Stem cell filter
  • Infectious (3) Apply Infectious filter
  • LncRNAs (3) Apply LncRNAs filter
  • Metabolism (3) Apply Metabolism filter
  • Diet (2) Apply Diet filter
  • Infammation (2) Apply Infammation filter
  • Reproduction (2) Apply Reproduction filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Colon (1) Apply Colon filter
  • Endocrinology-Development (1) Apply Endocrinology-Development filter
  • Excretory (1) Apply Excretory filter
  • Eyes (1) Apply Eyes filter
  • Gut (1) Apply Gut filter
  • Gut microbiome (1) Apply Gut microbiome filter
  • Heart (1) Apply Heart filter
  • HIV (1) Apply HIV filter
  • Hypertension (1) Apply Hypertension filter
  • Hypoglycemia (1) Apply Hypoglycemia filter
  • Infectious Disease: Epstein-Barr virus (1) Apply Infectious Disease: Epstein-Barr virus filter
  • Infectiouse Disease: Yellow Fever (1) Apply Infectiouse Disease: Yellow Fever filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Intestinal Stem Cells (1) Apply Intestinal Stem Cells filter
  • IO (1) Apply IO filter
  • Kidney (1) Apply Kidney filter
  • Lnc (1) Apply Lnc filter
  • Locomotion (1) Apply Locomotion filter
  • Lung (1) Apply Lung filter
  • Metabolic (1) Apply Metabolic filter
  • Nonalcoholic Fatty Liver Disease (1) Apply Nonalcoholic Fatty Liver Disease filter
  • Other: Liver (1) Apply Other: Liver filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Parasite (1) Apply Parasite filter
  • Sex Differences (1) Apply Sex Differences filter
  • Signalling (1) Apply Signalling filter
  • Skin (1) Apply Skin filter
  • Tumourigenesis (1) Apply Tumourigenesis filter
  • Wound healing (1) Apply Wound healing filter

Category

  • Publications (497) Apply Publications filter
Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology.

J Clin Pathol.

2015 Aug 31

Zhang Z, Weaver DL, Olsen D, deKay J, Peng Z, Ashikaga T, Evans MF.
PMID: 26323944 | DOI: 10.1136/jclinpath-2015-203275

Abstract

AIM:
Long non-coding RNAs (lncRNAs) are potential biomarkers for breast cancer risk stratification. LncRNA expression has been investigated primarily by RNA sequencing, quantitative reverse transcription PCR or microarray techniques. In this study, six breast cancer-implicated lncRNAs were investigated by chromogenic in situ hybridisation (CISH).

METHODS:
Invasive breast carcinoma (IBC), ductal carcinoma in situ (DCIS) and normal adjacent (NA) breast tissues from 52 patients were screened by CISH. Staining was graded by modified Allred scoring.

RESULTS:
HOTAIR, H19 and KCNQ1OT1 had significantly higher expression levels in IBC and DCIS than NA (p<0.05), and HOTAIR and H19 were expressed more strongly in IBC than in DCIS tissues (p<0.05). HOTAIR and KCNQ101T were expressed in tumour cells; H19 and MEG3 were expressed in stromal microenvironment cells; MALAT1 was expressed in all cells strongly and ZFAS1 was negative or weakly expressed in all specimens.

CONCLUSION:
These data corroborate the involvement of three lncRNAs (HOTAIR, H19 and KCNQ1OT1) in breast tumourigenesis and support lncRNA CISH as a potential clinical assay. Importantly, CISH allows identification of the tissue compartment expressing lncRNA.

Endometriosis Leads to an Increased Trefoil Factor 3 Concentration in the Peritoneal Cavity but Does Not Alter Systemic Levels.

Reprod Sci.

2016 Jun 20

Henze D, Doecke WD, Hornung D, Agueusop I, von Ahsen O, Machens K, Schmitz AA, Gashaw I.
PMID: 27330011 | DOI: 10.1177/1933719116653676

This study analyzed whether trefoil factor 3 (TFF3) is locally elevated and correlated with common biomarkers and inflammatory processes in endometriosis. Peritoneal fluid (PF) was obtained from 50 women and serum from 124 women with or without endometriosis. Experimental endometriosis was induced in female C57BL/6 mice by syngeneic transplantation of uterine tissue to the abdominal wall. Levels of TFF3 in PF of women with endometriosis were significantly increased (P < .05) and correlated with local levels of known biomarkers for endometriosis: cancer antigen (CA) 125, CA-19-9, interleukin 8, monocyte chemotactic protein 1, and matrix metalloproteinase 7. Serum levels of TFF3 in women were significantly influenced by the menstrual cycle but were independent from disease state. In mice, local TFF3 levels were significantly elevated in early endometriosis (up to 4 weeks after transplantation, P < .001) and corresponded to increases in spleen weight as marker for systemic inflammation. This study provides the first evidence that TFF3 is locally elevated in the peritoneal cavity in endometriosis and might play a role in disease pathogenesis and its associated inflammatory processes. Furthermore, the results show that TFF3 is regulated through the menstrual cycle. With respect to animal models, syngeneic mouse model does reflect local TFF3 upregulation in the peritoneal cavity affected by endometriosis.

ACN9 Regulates the Inflammatory Responses in Human Bronchial Epithelial Cells

Tuberc Respir Dis

2017 Jul 03

Jeong JH, Kim J, Kim J, Heo HR, Jeong JS, Ryu YJ, Hong Y, Han SS, Hong SH, Lee SJ, Kim WJ.
PMID: 28747957 | DOI: 10.4046/trd.2017.80.3.247

Abstract

BACKGROUND:

Airway epithelial cells are the first line of defense, against pathogens and environmental pollutants, in the lungs. Cellular stress by cadmium (Cd), resulting in airway inflammation, is assumed to be directly involved in tissue injury, linked to the development of lung cancer, and chronic obstructive pulmonary disease (COPD). We had earlier shown that ACN9 (chromosome 7q21), is a potential candidate gene for COPD, and identified significant interaction with smoking, based on genetic studies. However, the role of ACN9 in the inflammatory response, in the airway cells, has not yet been reported.

METHODS:

We first checked the anatomical distribution of ACN9 in lung tissues, using mRNA in situ hybridization, and immunohistochemistry. Gene expression profiling in bronchial epithelial cells (BEAS-2B), was performed, after silencing ACN9. We further tested the roles of ACN9, in the intracellular mechanism, leading to Cd-induced production, of proinflammatory cytokines in BEAS-2B.

RESULTS:

ACN9 was localized in lymphoid, and epithelial cells, of human lung tissues. ACN9 silencing, led to differential expression of 216 genes. Pathways of sensory perception to chemical stimuli, and cell surface receptor-linked signal transduction, were significantly enriched. ACN9 silencing, further increased the expression of proinflammatory cytokines, in BEAS-2B after Cd exposure.

CONCLUSION:

Our findings suggest, that ACN9 may have a role, in the inflammatory response in the airway.

Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon

Biomolecules

2023 Jan 09

Leembruggen, AJL;Lu, Y;Wang, H;Uzungil, V;Renoir, T;Hannan, AJ;Stamp, LA;Hao, MM;Bornstein, JC;
PMID: 36671524 | DOI: 10.3390/biom13010139

Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.
LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis

Molecular therapy : the journal of the American Society of Gene Therapy

2022 Jan 17

Shi, L;Yang, Y;Li, M;Li, C;Zhou, Z;Tang, G;Wu, L;Yao, Y;Shen, X;Hou, Z;Jia, H;
PMID: 35051616 | DOI: 10.1016/j.ymthe.2022.01.003

Oral squamous cell carcinoma (OSCC), which is typically preceded by oral leukoplakia (OL), is a common malignancy with poor prognosis. However, the signaling molecules governing this progression remain to be defined. Based on microarray analysis of genes expressed in OL and OSCC samples, we discovered that the long non-coding RNA IFITM4P was highly expressed in OSCC, and ectopic expression or knockdown of IFITM4P resulted in increased or decreased cell proliferation in vitro and in xenografted tumors, respectively. Mechanistically, in the cytoplasm IFITM4P acted as a scaffold to facilitate recruiting SASH1 to bind and phosphorylate TAK1 (Thr187), and in turn to increase the phosphorylation of nuclear factor κB (Ser536) and concomitant induction of PD-L1 expression, resulting in activation of an immunosuppressive program that allows OL cells to escape anti-cancer immunity in cytoplasm. In nucleus, IFITM4P reduced Pten transcription by enhancing the binding of KDM5A to the Pten promoter, thereby upregulating PD-L1 in OL cells. Moreover, mice bearing tumors with high IFITM4P expression had notable therapeutic sensitivity to PD-1 monoclonal antibody (mAb) treatment. Collectively, these data demonstrate that IFITM4P may serve as a new therapeutic target in blockage of oral carcinogenesis, and PD-1 mAb can be an effective reagent to treat OSCC.
A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies.

Blood Cancer J. 2015 May 29;5:e316

Kim SY, Theunissen JW, Balibalos J, Liao-Chan S, Babcock MC, Wong T, Cairns B, Gonzalez D, van der Horst EH, Perez M, Levashova Z, Chinn L, D'Alessio JA, Flory M, Bermudez A, Jackson DY, Ha E, Monteon J, Bruhns MF, Chen G, Migone TS.
PMID: 26026117

Although several new therapeutic approaches have improved outcomes in the treatment of hematologic malignancies, unmet need persists in acute myeloid leukemia (AML), multiple myeloma (MM) and non-Hodgkin's lymphoma. Here we describe the proteomic identification of a novel cancer target, SAIL (Surface Antigen In Leukemia), whose expression is observed in AML, MM, chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). While SAIL is widely expressed in CLL, AML, MM, DLBCL and FL patient samples, expression in cancer cell lines is mostly limited to cells of AML origin. We evaluated the antitumor activity of anti-SAIL monoclonal antibodies, 7-1C and 67-7A, conjugated to monomethyl auristatin F. Following internalization, anti-SAIL antibody-drug conjugates (ADCs) exhibited subnanomolar IC50 values against AML cell lines in vitro. In pharmacology studies employing AML cell line xenografts, anti-SAIL ADCs resulted in significant tumor growth inhibition. The restricted expression profile of this target in normal tissues, the high prevalence in different types of hematologic cancers and the observed preclinical activity support the clinical development of SAIL-targeted ADCs.
Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells.

Oncotarget.P

2015 Sep 15

Roy A, Coum A, Marinescu VD, Põlajeva J, Smits A, Nelander S, Uhrbom L, Westermark B, Forsberg-Nilsson K, Pontén F, Tchougounova E.
PMID: 26164207 | DOI: -

Glioblastoma (GBM) is a high-grade glioma with a complex microenvironment, including various inflammatory cells and mast cells (MCs) as one of them. Previously we had identified glioma grade-dependent MC recruitment. In the present study we investigated the role of plasminogen activator inhibitor 1 (PAI-1) in MC recruitment.PAI-1, a primary regulator in the fibrinolytic cascade is capable of forming a complex with fibrinolytic system proteins together with low-density lipoprotein receptor-related protein 1 (LRP1). We found that neutralizing PAI-1 attenuated infiltration of MCs. To address the potential implication of LRP1 in this process, we used a LRP1 antagonist, receptor-associated protein (RAP), and demonstrated the attenuation of MC migration. Moreover, a positive correlation between the number of MCs and the level of PAI-1 in a large cohort of human glioma samples was observed. Our study demonstrated the expression of LRP1 in human MC line LAD2 and in MCs in human high-grade glioma. The activation of potential PAI-1/LRP1 axis with purified PAI-1 promoted increased phosphorylation of STAT3 and subsequently exocytosis in MCs.These findings indicate the influence of the PAI-1/LRP1 axis on the recruitment of MCs in glioma. The connection between high-grade glioma and MC infiltration could contribute to patient tailored therapy and improve patient stratification in future therapeutic trials.

A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA

Neuron.

2016 May 31

Rani N, Nowakowski TJ, Zhou H, Godshalk SE, Lisi V, Kriegstein AR, Kosik KS.
PMID: 27263970 | DOI: 10.1016/j.neuron.2016.05.005.

Long non-coding RNAs (lncRNAs) are a diverse and poorly conserved category of transcripts that have expanded greatly in primates, particularly in the brain. We identified an lncRNA, which has acquired 16 microRNA response elements for miR-143-3p in the Catarrhini branch of primates. This lncRNA, termed LncND (neurodevelopment), is expressed in neural progenitor cells and then declines in neurons. Binding and release of miR-143-3p by LncND control the expression of Notch receptors. LncND expression is enriched in radial glia cells (RGCs) in the ventricular and subventricular zones of developing human brain. Downregulation in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p overexpression. Gain of function of LncND in developing mouse cortex led to an expansion of PAX6+ RGCs. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling within the neural progenitor pool in primates that may have contributed to the expansion of cerebral cortex.

IL-17A is Elevated in End-stage COPD and Contributes to Cigarette Smoke-induced Lymphoid Neogenesis

Am J Respir Crit Care Med. 2015 Apr 6.

Roos AB, Sandén C, Mori M, Bjermer L, Stampfli MR, Erjefält JS.
PMID: 25844618

Abstract RATIONALE: End-stage chronic obstructive pulmonary disease (COPD) is associated with an accumulation of pulmonary lymphoid follicles. Interleukin (IL)-17A is implicated in COPD and pulmonary lymphoid neogenesis in response to microbial stimuli. We hypothesized that IL-17A is increased in peripheral lung tissue during end-stage COPD and also directly contributes to cigarette smoke-induced lymphoid neogenesis. OBJECTIVE: Characterize the tissue expression and functional role of IL-17A in end-stage COPD. METHODS: Automated immune-detection of IL-17A and IL-17F was performed in lung tissue specimens collected from patients with GOLD stage I-IV COPD, as well as smoking and never-smoking controls. In parallel, Il17a-/- mice and WT controls were exposed to cigarette smoke for 24 weeks and pulmonary lymphoid neogenesis was assessed. MEASUREMENTS AND MAIN RESULTS: Tissue expression of IL-17A and IL-17F was increased in COPD and correlated with lung function decline. IL-17A was significantly elevated in severe-very severe COPD (GOLD III/IV), compared to both smokers and never-smokers without COPD. While CD3+ T cells expressed IL-17A in very severe COPD, the majority of IL-17A+ cells were identified as tryptase+ mast cells. Attenuated lymphoid neogenesis and reduced expression of the B cell attracting chemokine C-X-C motif ligand (CXCL)12 was observed in cigarette smoke-exposed Il17a-/- mice. CXCL12 was also highly expressed in lymphoid follicles in COPD lungs, and the pulmonary expression was significantly elevated in end-stage COPD. CONCLUSION: IL-17A in the peripheral lung of patients with severe-very severe COPD may contribute to disease progression and development of lymphoid follicles via activation of CXCL12.
Localization of complement factor H gene expression and protein distribution in the mouse outer retina

Molecular Vision 2015; 21:110-123

Smit-McBride Z, Oltjen SL, Radu RA, Estep J, Nguyen AT, Gong Q, Hjelmeland LM.
PMID: //www.molvis.org/molvis/v21/110/

Purpose: To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina. Methods: Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC. Results: Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh−/− eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh−/− mice. Greatly reduced Cfh protein immunohistological signals in the Cfh−/− eyes also supported the specificity of the Cfh protein distribution results. Conclusions: Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC.
Mucosal Toll-like Receptor 3-dependent Synthesis of Complement Factor B and Systemic Complement Activation in Inflammatory Bowel Disease

Inflamm Bowel Dis. 2014 Apr 15

Ostvik AE, Vb Granlund A, Gustafsson BI, Torp SH, Espevik T, Mollnes TE, Damås JK, Sandvik AK.
PMID: 24739633

Background: Recent studies link Toll-like receptor 3 (TLR3) to the pathogenesis of inflammatory bowel disease (IBD). Screening TLR3-agonist response in an intestinal epithelial cell line, we found complement factor B mRNA (CFB) potently upregulated and went on to further study localization of complement factor B synthesis and systemic activation of complement in ulcerative colitis and Crohn's disease. Methods: In a transcriptome analysis of poly (I:C) stimulated HT-29 cells, we found CFB highly upregulated downstream of TLR3. We sought to confirm CFB upregulation in a microarray gene expression analysis on colonic biopsies from an IBD population (n = 133). Immunohistochemical staining and in situ hybridization were done to identify cellular sources of factor B and CFB. Systemic complement activation was assessed in plasma (n = 18) using neoepitope-based enzyme linked immunosorbent assay. Results: CFB mRNA and protein were abundantly expressed in the colonic epithelial cell line, and synthesis enhanced by the poly (I:C) TLR3 ligand. In inflamed versus normal colonic mucosa of ulcerative colitis and Crohn's disease, CFB mRNA was the most significantly overexpressed gene and the mRNA abundance ratio was among the 50 highest. Epithelial cells were the dominating site of factor B expression. Systemic complement activation was significantly higher in active than in nonactive IBD. Conclusions: This study is the first to link TLR3 to activation of the alternative complement pathway. Complement factor B is potently upregulated locally in IBD in addition to having a possible central role in systemic complement activation. This suggests a prominent role for complement in IBD pathogenesis.
CXCR4, CXCL12 and the relative CXCL12-CXCR4 expression as prognostic factors in colon cancer.

Tumour Biol.

2015 Dec 17

Stanisavljević L, Aßmus J, Storli KE, Leh SM, Dahl O, Myklebust MP.
PMID: 26678887 | DOI: -

The CXCL12-CXCR4 axis is proposed to mediate metastasis formation. In this study, we examined CXCL12, CXCR4 and the relative CXCL12-CXCR4 expression as prognostic factors in two cohorts of colon cancer patients. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to study CXCR4, CXCL12 and relative CXCL12-CXCR4 expression in tissue microarrays. Our study included totally 596 patients, 290 in cohort 1 and 306 in cohort 2. For tumour, node, metastasis (TNM) stage III, low nuclear expression of CXCR4 was a positive prognostic factor for 5-year disease-free survival (DFS) in cohort 1 (P = 0.007) and cohort 2 (P = 0.023). In multivariate analysis for stage III, nuclear expression of CXCR4 in cohort 1 was confirmed as a prognostic factor for DFS (hazard ratio (HR), 0.27; 95 % CI, 0.09 to 0.77). For TNM stage III, high cytoplasmic expression of CXCL12 was associated with better 5-year DFS in both cohorts (P = 0.006 and P = 0.006, respectively). We further validated the positive prognostic value of CXCL12 expression for 5-year DFS in stage III with ISH (P = 0.022). For TNM stage III, the relative CXCL12-CXCR4 expression (CXCL12 > CXCR4 vs CXCL12 = CXCR4 vs CXCL12 < CXCR4) was a prognostic factor for 5-year DFS in cohort 1 (92 % vs 46 % vs 31 %, respectively; P < 0.001) and cohort 2 (92 % vs 66 % vs 30 %, respectively; P = 0.006). In conclusion, CXCL12 and relative CXCL12-CXCR4 expression are independent prognostic factors for 5-year DFS in TNM stage III colon cancer.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?