Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (100)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • (-) Remove Slc17a6 filter Slc17a6 (77)
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (33) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (31) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (8) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (5) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter

Research area

  • Neuroscience (77) Apply Neuroscience filter
  • Cancer (6) Apply Cancer filter
  • Development (4) Apply Development filter
  • Other (4) Apply Other filter
  • Behavior (3) Apply Behavior filter
  • Inflammation (3) Apply Inflammation filter
  • Metabolism (3) Apply Metabolism filter
  • Sleep (3) Apply Sleep filter
  • CGT (2) Apply CGT filter
  • Nueroscience (2) Apply Nueroscience filter
  • Addiction (1) Apply Addiction filter
  • Anesthesia (1) Apply Anesthesia filter
  • Anxiety (1) Apply Anxiety filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorder (1) Apply Autism spectrum disorder filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • behavioral (1) Apply behavioral filter
  • Bone (1) Apply Bone filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Cerebral cavernous malformation (1) Apply Cerebral cavernous malformation filter
  • Developmental (1) Apply Developmental filter
  • emotional valence (1) Apply emotional valence filter
  • Endocrinology (1) Apply Endocrinology filter
  • Epilepsy (1) Apply Epilepsy filter
  • Eye (1) Apply Eye filter
  • Heart (1) Apply Heart filter
  • Itch (1) Apply Itch filter
  • Leigh Syndrome (1) Apply Leigh Syndrome filter
  • Macular Degeneration (1) Apply Macular Degeneration filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Blood Vessels (1) Apply Other: Blood Vessels filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Sodium intake (1) Apply Other: Sodium intake filter
  • Other: Vision Loss (1) Apply Other: Vision Loss filter
  • Pain (1) Apply Pain filter
  • Paralysis (1) Apply Paralysis filter
  • Regeneration (1) Apply Regeneration filter
  • Retina (1) Apply Retina filter
  • Reward (1) Apply Reward filter
  • Sensory neuron development (1) Apply Sensory neuron development filter
  • Sensory Neurons (1) Apply Sensory Neurons filter
  • Spinal Cord injury (1) Apply Spinal Cord injury filter
  • Stem cell (1) Apply Stem cell filter
  • Stem Cells (1) Apply Stem Cells filter
  • Valence processing (1) Apply Valence processing filter

Category

  • Publications (100) Apply Publications filter
TP53 positivity combined with high fibrinogen expression defines a subtype of oral squamous cell carcinoma with an unfavorable prognosis

Human Pathology

2022 Oct 01

Inoue, A;Matsumoto, T;Ito, Y;Saegusa, M;Takahashi, H;
| DOI: 10.1016/j.humpath.2022.10.008

The number of deaths due to oral squamous carcinoma (OSCC), a malignant tumor of the oral cavity, is on the increase. We examined fibrinogen (FIB) expression in patients with OSCC and developed novel immunoprofile classification methods that include FIB. The plasma FIB level in patients with OSCC was elevated compared with that in patients with non-tumor oral disease (non-T); using a cut-off point of 342 mg/dL, we found the area under the curve-receiver operating characteristic level for OSCC was 0.745. Similarly, FIB expression in OSCC tissues was significantly higher compared with that in non-T tissues. Hierarchical clustering based on the immunoprofile of several markers including FIB, p53, and p16 revealed four groups that could be used to categorize OSCC cases (referred to as immunoprofile subtypes, [IPS], I-IV). Tumors in IPS-II, which were FIB+/p53+, were associated with a significantly worse overall survival (OS) when compared with the other subtypes. We conclude that our IPS classification system can facilitate prognostic evaluation in OSCC, and that quantification of FIB is an important component of the classification strategy for this disease.
Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown.

JCI Insight

2017 Feb 09

Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A.
PMID: 28194443 | DOI: 10.1172/jci.insight.90905

In the central nervous system, endothelial cells (ECs) and pericytes (PCs) of blood vessel walls cooperatively form a physical and chemical barrier to maintain neural homeostasis. However, in diabetic retinopathy (DR), the loss of PCs from vessel walls is assumed to cause breakdown of the blood-retina barrier (BRB) and subsequent vision-threatening vascular dysfunctions. Nonetheless, the lack of adequate DR animal models has precluded disease understanding and drug discovery. Here, by using an anti-PDGFRβ antibody, we show that transient inhibition of the PC recruitment to developing retinal vessels sustained EC-PC dissociations and BRB breakdown in adult mouse retinas, reproducing characteristic features of DR such as hyperpermeability, hypoperfusion, and neoangiogenesis. Notably, PC depletion directly induced inflammatory responses in ECs and perivascular infiltration of macrophages, whereby macrophage-derived VEGF and placental growth factor (PlGF) activated VEGFR1 in macrophages and VEGFR2 in ECs. Moreover, angiopoietin-2 (Angpt2) upregulation and Tie1 downregulation activated FOXO1 in PC-free ECs locally at the leaky aneurysms. This cycle of vessel damage was shut down by simultaneously blocking VEGF, PlGF, and Angpt2, thus restoring the BRB integrity. Together, our model provides new opportunities for identifying the sequential events triggered by PC deficiency, not only in DR, but also in various neurological disorders.

PACAP controls endocrine and behavioral stress responses via separate brain circuits

Biological Psychiatry Global Open Science

2023 Apr 01

Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001

Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
GAD2-expression defines a class of excitatory lateral habenula neurons in mice that project to the raphe and pontine tegmentum

eNeuro

2020 Apr 22

Quina LA1, Walker A1, Morton G1, Han V1, Turner EE2,3
PMID: 32332079 | DOI: 10.1523/ENEURO.0527-19.2020

The lateral habenula (LHb) sends complex projections to several areas of the mesopontine tegmentum, the raphe, and the hypothalamus. However, few markers have been available to distinguish subsets of LHb neurons that may serve these pathways. In order to address this complexity, we examined the mouse and rat LHb for neurons that express the GABA biosynthesis enzymes glutamate decarboxylase 1 and 2 (GAD1, GAD2), and the vesicular GABA transporter (VGAT). The mouse LHb contains a population of neurons that express GAD2, while the rat LHb contains discrete populations of neurons that express GAD1 and VGAT. However, we could not detect single neurons in either species that co-express a GABA synthetic enzyme and VGAT, suggesting that these LHb neurons do not use GABA for conventional synaptic transmission. Instead, all of the neuronal types expressing a GABAergic marker in both species showed co-expression of the glutamate transporter VGluT2. Anterograde tract-tracing of the projections of GAD2-expressing LHb neurons in Gad2Cre mice, combined with retrograde tracing from selected downstream nuclei, show that LHb-GAD2 neurons project selectively to the midline structures in the mesopontine tegmentum, including the median raphe and nucleus incertus, and only sparsely innervate the hypothalamus, rostromedial tegmental nucleus, and ventral tegmental area. Postsynaptic recording of LHb-GAD2 neuronal input to tegmental neurons confirms that glutamate, not GABA, is the fast neurotransmitter in this circuit. Thus GAD2 expression can serve as a marker for functional studies of excitatory neurons serving specific LHb output pathways in mice.SIGNFICANCE STATEMENT The lateral habenula provides a major link between subcortical forebrain areas and the dopamine (DA) and serotonin (5HT) systems of the midbrain and pons, and it has been implicated in reward mechanisms and the regulation of mood states. Few markers have been available for the specific cell types and complex output pathways of the lateral habenula. Here we examined the expression of genes mediating GABAergic and glutamatergic transmission in the mouse and rat LHb, where no neurons in either species expressed a full complement of GABAergic markers, and all expressed the glutamatergic marker VGluT2. Consistent with this, in mice the LHb GAD2 neurons are excitatory and appear to use only glutamate for fast synaptic transmission.
Expression of type one cannabinoid receptor in different subpopulation of kisspeptin neurons and kisspeptin afferents to GnRH neurons in female mice

Brain structure & function

2021 Jul 14

Wilheim, T;Nagy, K;Mohanraj, M;Ziarniak, K;Watanabe, M;Sliwowska, J;Kalló, I;
PMID: 34263407 | DOI: 10.1007/s00429-021-02339-z

The endocannabinoids have been shown to target the afferents of hypothalamic neurons via cannabinoid 1 receptor (CB1) and thereby to influence their excitability at various physiological and/or pathological processes. Kisspeptin (KP) neurons form afferents of multiple neuroendocrine cells and influence their activity via signaling through a variation of co-expressed classical neurotransmitters and neuropeptides. The differential potency of endocannabinoids to influence the release of classical transmitters or neuropeptides, and the ovarian cycle-dependent functioning of the endocannabinoid signaling in the gonadotropin-releasing hormone (GnRH) neurons initiated us to study whether (a) the different subpopulations of KP neurons express CB1 mRNAs, (b) the expression is influenced by estrogen, and (c) CB1-immunoreactivity is present in the KP afferents to GnRH neurons. The aim of the study was to investigate the site- and cell-specific expression of CB1 in female mice using multiple labeling in situ hybridization and immunofluorescent histochemical techniques. The results support that CB1 mRNAs are expressed by both the GABAergic and glutamatergic subpopulations of KP neurons, the receptor protein is detectable in two-thirds of the KP afferents to GnRH neurons, and the expression of CB1 mRNA shows an estrogen-dependency. The applied estrogen-treatment, known to induce proestrus, reduced the level of CB1 transcripts in the rostral periventricular area of the third ventricle and arcuate nucleus, and differently influenced its co-localization with vesicular GABA transporter or vesicular glutamate transporter-2 in KP neurons. This indicates a gonadal cycle-dependent role of endocannabinoid signaling in the neuronal circuits involving KP neurons.
PHD2 inactivation in Type I cells drives HIF‐2α dependent multi‐lineage hyperplasia and the formation of paraganglioma‐like carotid bodies

J Physiol.

2018 Jun 19

Fielding JW, Hodson EJ, Cheng X, Ferguson DJP, Eckardt L, Adam J, Lip P, Maton-Howarth M, Ratnayaka I, Pugh CW, Buckler KJ, Ratcliffe PJ, Bishop T.
PMID: 29917232 | DOI: 10.1113/JP275996

The carotid body is a peripheral chemoreceptor that plays a central role in mammalian oxygen homeostasis. In response to sustained hypoxia, it manifests rapid cellular proliferation and an associated increase in responsiveness to hypoxia. Understanding the cellular and molecular mechanisms underlying these processes is of interest both to specialised chemoreceptive functions of that organ and potentially to the general physiology and pathophysiology of cellular hypoxia. We have combined cell lineage tracing technology and conditionally inactivated alleles in recombinant mice to examine the role of components of the HIF hydroxylase pathway in specific cell types within the carotid body. We show that exposure to sustained hypoxia (10 % oxygen) drives rapid expansion of the Type I, tyrosine hydroxylase expressing cell lineage, with little transdifferentiation to or from that lineage. Inactivation of a specific HIF isoform, HIF-2α, in the Type I cells was associated with greatly reduced proliferation of Type I cells and hypoxic ventilatory responses, with ultrastructural evidence of an abnormality in the action of hypoxia on dense core secretory vesicles. We also show that inactivation of the principal HIF prolyl hydroxylase PHD2 within the Type I cell lineage is sufficient to cause multi-lineage expansion of the carotid body, with characteristics resembling paragangliomas. These morphological changes were dependent on the integrity of HIF-2α. These findings implicate specific components of the HIF hydroxylase pathway (PHD2 and HIF-2α) within Type I cells of the carotid body in the oxygen sensing and adaptive functions of that organ.

Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation

Blood

2022 Aug 18

Globisch, MA;Onyeogaziri, FC;Jauhiainen, S;Yau, ACY;Orsenigo, F;Conze, LL;Arce, M;Corada, M;Smith, RO;Rorsman, C;Sundell, V;Fernando, D;Daniel, G;Mattsson, O;Savander, HS;Wanders, A;Jahromi, BR;Laakso, A;Niemelä, M;Dejana, E;Magnusson, PU;
PMID: 35981497 | DOI: 10.1182/blood.2021015350

Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies; but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA-sequencing to investigate mouse brain endothelial cells with specific Ccm3 gene deletion (Ccm3-iECKO). We found that Ccm3 deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared to wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. Lastly, we created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3, expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCM. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral β1 receptors

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

2021 Dec 18

You, ZB;Galaj, E;Alén, F;Wang, B;Bi, GH;Moore, AR;Buck, T;Crissman, M;Pari, S;Xi, ZX;Leggio, L;Wise, RA;Gardner, EL;
PMID: 34923576 | DOI: 10.1038/s41386-021-01249-2

Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.
Neurons innervating both the central amygdala and the ventral tegmental area encode different emotional valences

Frontiers in neuroscience

2023 May 05

Liu, A;Cheng, Y;Huang, J;
PMID: 37214399 | DOI: 10.3389/fnins.2023.1178693

Mammals are frequently exposed to various environmental stimuli, and to determine whether to approach or avoid these stimuli, the brain must assign emotional valence to them. Therefore, it is crucial to investigate the neural circuitry mechanisms involved in the mammalian brain's processing of emotional valence. Although the central amygdala (CeA) and the ventral tegmental area (VTA) individually encode different or even opposing emotional valences, it is unclear whether there are common upstream input neurons that innervate and control both these regions, and it is interesting to know what emotional valences of these common upstream neurons. In this study, we identify three major brain regions containing neurons that project to both the CeA and the VTA, including the posterior bed nucleus of the stria terminalis (pBNST), the pedunculopontine tegmental nucleus (PPTg), and the anterior part of the basomedial amygdala (BMA). We discover that these neural populations encode distinct emotional valences. Activating neurons in the pBNST produces positive valence, enabling mice to overcome their innate avoidance behavior. Conversely, activating neurons in the PPTg produces negative valence and induces anxiety-like behaviors in mice. Neuronal activity in the BMA, on the other hand, does not influence valence processing. Thus, our study has discovered three neural populations that project to both the CeA and the VTA and has revealed the distinct emotional valences these populations encode. These results provide new insights into the neurological mechanisms involved in emotional regulation.
TGFβ1 Induces Senescence and Attenuated VEGF Production in Retinal Pericytes

Biomedicines

2022 Jun 14

Avramovic, D;Archaimbault, SA;Kemble, AM;Gruener, S;Lazendic, M;Westenskow, PD;
PMID: 35740425 | DOI: 10.3390/biomedicines10061404

Diabetic retinopathy (DR) is a microvascular disease of the retina and a serious complication of type I and type II diabetes mellitus. DR affects working-age populations and can cause permanent vision loss if left untreated. The standard of care for proliferative DR is inhibiting VEGF. However, the mechanisms that induce excessive VEGF production in the retina remain elusive, although some evidence links elevated VEGF in the diabetic retina with local and systemic TGFβ1 upexpression. Here, we present evidence from animal models of disease suggesting that excessive TGFβ1 production in the early DR is correlated with VEGF mRNA and protein production by senescent pericytes and other retinal cells. Collectively, these results confirm that TGFβ1 is strongly implicated in the vascular complications of DR.
Edinger-Westphal peptidergic neurons enable maternal preparatory nesting

Neuron

2022 Feb 01

Topilko, T;Diaz, SL;Pacheco, CM;Verny, F;Rousseau, CV;Kirst, C;Deleuze, C;Gaspar, P;Renier, N;
PMID: 35123655 | DOI: 10.1016/j.neuron.2022.01.012

Optimizing reproductive fitness in mammalians requires behavioral adaptations during pregnancy. Maternal preparatory nesting is an essential behavior for the survival of the upcoming litter. Brain-wide immediate early gene mapping in mice evoked by nesting sequences revealed that phases of nest construction strongly activate peptidergic neurons of the Edinger-Westphal nucleus in pregnant mice. Genetic ablation, bidirectional neuromodulation, and in vitro and in vivo activity recordings demonstrated that these neurons are essential to modulate arousal before sleep to promote nesting specifically. We show that these neurons enable the behavioral effects of progesterone on preparatory nesting by modulating a broad network of downstream targets. Our study deciphers the role of midbrain CART+ neurons in behavioral adaptations during pregnancy vital for reproductive fitness.
Biocompatible, Purified VEGF-A mRNA Improves Cardiac Function after Intracardiac Injection One Week Post-Myocardial Infarction in Swine

Molecular Therapy: Methods & Clinical Development

2018 Apr 10

Carlsson L, Clarke JC, Yen C, Gregoire F, Albery T, Billger M, Egnell AC, Gan LM, Jennbacken K, Johansson E, Linhardt G, Martinsson S, Sadiq MW, Witman N, Wang QD, Chen CH, Wang YP, Lin S, Ticho B, Hsieh P, Chien KR, Fritsche-Danielson R.
PMID: - | DOI: 10.1016/j.omtm.2018.04.003

Messenger RNA (mRNA) can direct dose-dependent protein expression in cardiac muscle without genome integration, but to date has not been shown to improve cardiac function in a safe, clinically applicable way. Herein, we report that a purified and optimized mRNA in a biocompatible citrate-saline formulation is tissue specific, long-acting, and does not stimulate an immune response. In small and large animal, permanent occlusion myocardial infarction models VEGF-A 165 mRNA improves systolic ventricular function and limits myocardial damage. Following a single administration a week post infarction in mini-pigs, left ventricular ejection fraction, inotropy, and ventricular compliance improved, border zone arteriolar and capillary density increased, and myocardial fibrosis decreased at two months post-treatment. Purified VEGF-A mRNA establishes the feasibility of improving cardiac function in the sub-acute therapeutic window and may represent a new class of therapies for ischemic injury.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?