McMeekin, LJ;Joyce, KL;Jenkins, LM;Bohannon, BM;Patel, KD;Bohannon, AS;Patel, A;Fox, SN;Simmons, MS;Day, JJ;Kralli, A;Crossman, DK;Cowell, RM;
PMID: 34648866 | DOI: 10.1016/j.neuroscience.2021.10.007
Deficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons. As a transcriptional coactivator, PGC-1α requires transcription factors to specify cell-type-specific gene programs; while much is known about these factors in peripheral tissues, it is unclear if PGC-1α utilizes these same factors in neurons. Here, we identified putative transcription factors controlling PGC-1α-dependent gene expression in the brain using bioinformatics, and then validated the role of the top candidate in a knockout mouse model. We transcriptionally profiled cells overexpressing PGC-1α and searched for over-represented binding motifs in the promoters of upregulated genes. Binding sites of the estrogen-related receptor (ERR) family of transcription factors were enriched and blockade of ERRα attenuated PGC-1α-mediated induction of mitochondrial and synaptic genes in cell culture. Localization in the mouse brain revealed enrichment of ERRα expression in parvalbumin-expressing neurons with tight correlation of expression with PGC-1α across brain regions. In ERRα null mice, PGC-1α-dependent genes were reduced in multiple regions, including neocortex, hippocampus, and cerebellum, though not to the extent observed in PGC-1α null mice. Behavioral assessment revealed ambulatory hyperactivity in response to amphetamine and impairments in sensorimotor gating without the overt motor impairment characteristic of PGC-1α null mice. These data suggest that ERRα is required for normal levels of expression of PGC-1α-dependent genes in neurons, but that additional factors may be involved in their regulation. Significance statement The transcription factors with which PGC-1α interacts determine specificity of the transcriptional program it drives across cell populations, but those mediating its functions in parvalbumin-expressing neurons are unknown. Relative to other PGC-1α-interacting transcription factors, ERRα is enriched in parvalbumin-expressing neurons and shows robust spatial and temporal correlation with PGC-1α expression throughout the brain. ERRα is also necessary for PGC-1α-dependent transcription both in vitro and in vivo for metabolic and neuronal transcripts. These data suggest that ERRα is an important player in cell-specific PGC-1α-dependent transcription in the CNS and may play a role in regulating parvalbumin-expressing neuron maturation and function.
Involvement of Scratch2 in GalR1-mediated depression-like behaviors in the rat ventral periaqueductal gray
Proceedings of the National Academy of Sciences of the United States of America
Yang, Y;Li, Y;Liu, B;Li, C;Liu, Z;Deng, J;Luo, H;Li, X;Wu, J;Li, H;Wang, CY;Zhao, M;Wu, H;Lallemend, F;Svenningsson, P;Hökfelt, TGM;Xu, ZD;
PMID: 34108238 | DOI: 10.1073/pnas.1922586118
Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.
Shimoda M, Yoshida H, Mizuno S, Hirozane T, Horiuchi K, Yoshino Y, Hara H, Kanai Y, Inoue S, Ishijima M, Okada Y.
PMID: 28284715 | DOI: 10.1016/j.ajpath.2017.01.005
Hyaluronan (HA) plays an important role in the development and maintenance of tissues, and its degradation is implicated in many pathologic conditions. We recently reported that HA-binding protein involved in HA depolymerization (HYBID/KIAA1199; encoded by CEMIP) is a key molecule in HA depolymerization, but its developmental and pathologic functions remain elusive. We generated Hybid-deficient mice using the Cre/locus of crossover in P1 (loxP) system and analyzed their phenotypes. Hybid-deficient mice were viable and fertile, but their adult long bones were shorter than those of wild-type animals. Hybid-deficient mice showed lengthening of hypertrophic zone in the growth plate until 4 weeks after birth. There were fewer capillaries and osteoclasts at the chondroosseous junction in the Hybid-deficient mice compared with the wild-type mice. In situ hybridization demonstrated that Hybid was expressed by hypertrophic chondrocytes at the chondroosseous junction. Cultured primary chondrocytes expressed higher levels of Hybid than did osteoblasts or osteoclasts, and the Hybid expression in the chondrocytes was up-regulated after maturation to hypertrophic chondrocytes. High-molecular-weight HA was accumulated in the lengthened hypertrophic zone in Hybid-deficient mice. In addition, high-molecular-weight HA significantly reduced cell growth and tube formation in vascular endothelial growth factor-stimulated or -nonstimulated endothelial cells. HA metabolism by HYBID is involved in endochondral ossification during postnatal development by modulation of angiogenesis and osteoclast recruitment at the chondroosseous junction.
Lavertu-Jolin, M;Chattopadhyaya, B;Chehrazi, P;Carrier, D;Wünnemann, F;Leclerc, S;Dumouchel, F;Robertson, D;Affia, H;Saba, K;Gopal, V;Patel, AB;Andelfinger, G;Pineyro, G;Di Cristo, G;
PMID: 37131076 | DOI: 10.1038/s41380-023-02085-0
While persistence of fear memories is essential for survival, a failure to inhibit fear in response to harmless stimuli is a feature of anxiety disorders. Extinction training only temporarily suppresses fear memory recovery in adults, but it is highly effective in juvenile rodents. Maturation of GABAergic circuits, in particular of parvalbumin-positive (PV+) cells, restricts plasticity in the adult brain, thus reducing PV+ cell maturation could promote the suppression of fear memories following extinction training in adults. Epigenetic modifications such as histone acetylation control gene accessibility for transcription and help couple synaptic activity to changes in gene expression. Histone deacetylase 2 (Hdac2), in particular, restrains both structural and functional synaptic plasticity. However, whether and how Hdac2 controls the maturation of postnatal PV+ cells is not well understood. Here, we show that PV+- cell specific Hdac2 deletion limits spontaneous fear memory recovery in adult mice, while enhancing PV+ cell bouton remodeling and reducing perineuronal net aggregation around PV+ cells in prefrontal cortex and basolateral amygdala. Prefrontal cortex PV+ cells lacking Hdac2, show reduced expression of Acan, a critical perineuronal net component, which is rescued by Hdac2 re-expression. Pharmacological inhibition of Hdac2 before extinction training is sufficient to reduce both spontaneous fear memory recovery and Acan expression in wild-type adult mice, while these effects are occluded in PV+-cell specific Hdac2 conditional knockout mice. Finally, a brief knock-down of Acan expression mediated by intravenous siRNA delivery before extinction training but after fear memory acquisition is sufficient to reduce spontaneous fear recovery in wild-type mice. Altogether, these data suggest that controlled manipulation of PV+ cells by targeting Hdac2 activity, or the expression of its downstream effector Acan, promotes the long-term efficacy of extinction training in adults.
Invest Ophthalmol Vis Sci.
Sun M, Wadehra M, Casero D, Lin MC, Aguirre B, Parikh S, Matynia A, Gordon L, Chu A
PMID: 32031575 | DOI: 10.1167/iovs.61.2.3
PURPOSE:
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. ROP occurs as a consequence of postnatal hyperoxia exposure in premature infants, resulting in vasoproliferation in the retina. The tetraspan protein epithelial membrane protein-2 (EMP2) is highly expressed in the retinal pigment epithelium (RPE) in adults, and it controls vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line. We, therefore, hypothesized that Emp2 knockout (Emp2 KO) protects against neovascularization in murine oxygen-induced retinopathy (OIR).
METHODS:
Eyes were obtained from wildtype (WT) and Emp2 KO mouse pups at P7, P12, P17, and P21 after normoxia or hyperoxia (P7-P12) exposure. Following hyperoxia exposure, RNA sequencing was performed using the retina/choroid layers obtained from WT and Emp2 KO at P17. Retinal sections from P7, P12, P17, and P21 were evaluated for Emp2, hypoxia-inducible factor 1? (Hif1?), and VEGF expression. Whole mount images were generated to assess vaso-obliteration at P12 and neovascularization at P17.
RESULTS:
Emp2 KO OIR mice demonstrated a decrease in pathologic neovascularization at P17 compared with WT OIR mice through evaluation of retinal vascular whole mount images. This protection was accompanied by a decrease in Hif1? at P12 and VEGFA expression at P17 in Emp2 KO animals compared with the WT animals in OIR conditions. Collectively, our results suggest that EMP2 enhances the effects of neovascularization through modulation of angiogenic signaling.
CONCLUSIONS:
The protection of Emp2 KO mice against pathologic neovascularization through attenuation of HIF and VEGF upregulation in OIR suggests that hypoxia-induced upregulation of EMP2 expression in the neuroretina modulates HIF-mediated neuroretinal VEGF expression
Duan X, Bradbury SR, Olsen BR, Berendsen AD.
PMID: 26899202 | DOI: 10.1016/j.matbio.2016.02.005.
Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2+ cell population. In contrast, loss of VEGF in Osx+ osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx+ precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx+ osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme.
Baho E, Chattopadhyaya B, Lavertu-Jolin M, Mazziotti R, Awad PN, Chehrazi P, Groleau M, Jahannault-Talignani C, Vaucher E, Ango F, Pizzorusso T, Baroncelli L, Di Cristo G.
PMID: 30936240 | DOI: 10.1523/JNEUROSCI.2881-18.2019
By virtue of their extensive axonal arborisation and perisomatic synaptic targeting, cortical inhibitory Parvalbumin (PV) cells strongly regulate principal cell output and plasticity and modulate experience-dependent refinement of cortical circuits during development. An interesting aspect of PV cell connectivity is its prolonged maturation time course, which is completed only by end of adolescence. The p75 neurotrophin receptor (p75NTR) regulates numerous cellular functions, however its role on cortical circuit development and plasticity remains elusive, mainly because localizing p75NTR expression with cellular and temporal resolution has been challenging.By using RNAscope and a modified version of the Proximity Ligation Assay, we found that p75NTR expression in PV cells decreases between the second and fourth postnatal week, at a time when PV cell synapse numbers increase dramatically. Conditional knockout of p75NTR in single PV neurons in vitro and in PV cell networks in vivo causes precocious formation of PV cell perisomatic innervation and perineural nets around PV cell somata, therefore suggesting that p75NTR expression modulates the timing of maturation of PV cell connectivity in the adolescent cortex.Remarkably, we found that PV cells still express p75NTR in adult mouse cortex of both sexes and that its activation is sufficient to destabilize PV cell connectivity and to restore cortical plasticity following monocular deprivation in vivo. Altogether, our results show that p75NTR activation dynamically regulates PV cell connectivity, and represents a novel tool to foster brain plasticity in adults.SIGNIFICANCE STATEMENTIn the cortex, inhibitory, GABA-releasing neurons control the output and plasticity of excitatory neurons. Within this diverse group, parvalbumin-expressing (PV) cells form the larger inhibitory system. PV cell connectivity develops slowly, reaching maturity only at the end of adolescence, however the mechanisms controlling the timing of its maturation are not well understood. We discovered that the expression of the neurotrophin receptor p75NTR in PV cells inhibits the maturation of their connectivity in a cell autonomous fashion, both in vitro and in vivo and that p75NTR activation in adult PV cells promotes their remodelling and restores cortical plasticity. These results reveal a new p75NTR function in the regulation of the time course of PV cell maturation and in limiting cortical plasticity.
The Journal of physiology
Peltekian, L;Gasparini, S;Fazan, FS;Karthik, S;Iverson, G;Resch, JM;Geerling, JC;
PMID: 37291801 | DOI: 10.1113/JP283169
In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.
Zhang, L;Koller, J;Gopalasingam, G;Qi, Y;Herzog, H;
PMID: 35691527 | DOI: 10.1016/j.molmet.2022.101525
Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons.We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons.Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control.NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.
Aguilar, K;Comes, G;Canal, C;Quintana, A;Sanz, E;Hidalgo, J;
PMID: 35770802 | DOI: 10.1002/glia.24234
Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh-like syndrome pathology, by pharmacologically depleting them using the colony-stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin-6 (IL-6) in the disease progression. IL-6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL-6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome.
Wyeth MS, Pelkey KA, Yuan X, Vargish G, Johnston AD, Hunt S, Fang C, Abebe D, Mahadevan V, Fisahn A, Salter MW, McInnes RR, Chittajallu R, McBain CJ.
PMID: 28854365 | DOI: 10.1016/j.celrep.2017.08.017
Although Netos are considered auxiliary subunits critical for kainate receptor (KAR) function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM)-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1)-, and parvalbumin (PV)-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediatedinhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.
Kuchroo, M;DiStasio, M;Song, E;Calapkulu, E;Zhang, L;Ige, M;Sheth, AH;Majdoubi, A;Menon, M;Tong, A;Godavarthi, A;Xing, Y;Gigante, S;Steach, H;Huang, J;Huguet, G;Narain, J;You, K;Mourgkos, G;Dhodapkar, RM;Hirn, MJ;Rieck, B;Wolf, G;Krishnaswamy, S;Hafler, BP;
PMID: 37147305 | DOI: 10.1038/s41467-023-37025-7
Due to commonalities in pathophysiology, age-related macular degeneration (AMD) represents a uniquely accessible model to investigate therapies for neurodegenerative diseases, leading us to examine whether pathways of disease progression are shared across neurodegenerative conditions. Here we use single-nucleus RNA sequencing to profile lesions from 11 postmortem human retinas with age-related macular degeneration and 6 control retinas with no history of retinal disease. We create a machine-learning pipeline based on recent advances in data geometry and topology and identify activated glial populations enriched in the early phase of disease. Examining single-cell data from Alzheimer's disease and progressive multiple sclerosis with our pipeline, we find a similar glial activation profile enriched in the early phase of these neurodegenerative diseases. In late-stage age-related macular degeneration, we identify a microglia-to-astrocyte signaling axis mediated by interleukin-1β which drives angiogenesis characteristic of disease pathogenesis. We validated this mechanism using in vitro and in vivo assays in mouse, identifying a possible new therapeutic target for AMD and possibly other neurodegenerative conditions. Thus, due to shared glial states, the retina provides a potential system for investigating therapeutic approaches in neurodegenerative diseases.