Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1460)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • (-) Remove PVALB filter PVALB (47)
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (222) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (51) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (33) Apply RNAscope Fluorescent Multiplex Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope HiPlex v2 assay (8) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Duplex (6) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (6) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • Neuroscience (183) Apply Neuroscience filter
  • Cancer (108) Apply Cancer filter
  • Development (56) Apply Development filter
  • Other: Methods (45) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Stem cell (7) Apply Stem cell filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Memory (4) Apply Memory filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Psychiatry (4) Apply Psychiatry filter
  • Stress (4) Apply Stress filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1460) Apply Publications filter
Chronic stress differentially alters mRNA expression of opioid peptides and receptors in the dorsal hippocampus of female and male rats

The Journal of comparative neurology

2021 Jan 22

Johnson, MA;Contoreggi, NH;Kogan, JF;Bryson, M;Rubin, BR;Gray, JD;Kreek, MJ;McEwen, BS;Milner, TA;
PMID: 33483980 | DOI: 10.1002/cne.25115

Chronic immobilization stress (CIS) results in sex-dependent changes in opioid peptide levels and receptor subcellular distributions within the rat dorsal hippocampus which are paralleled with an inability for males to acquire conditioned place preference (CPP) to oxycodone. Here, RNAScope in situ hybridization was used to determine the expression of hippocampal opioid peptides and receptors in unstressed (US) and CIS estrus female and male adult (~ 14 wk) Sprague Dawley rats. In all groups, dentate granule cells expressed PENK and PDYN; additionally, numerous interneurons expressed PENK. OPRD1 and OPRM1 were primarily expressed in interneurons, and to a lesser extent, in pyramidal and granule cells. OPRK1-was expressed in sparsely distributed interneurons. There were few baseline sex differences: US females compared to US males had more PENK-expressing and fewer OPRD1-expressing granule cells and more OPRM1-expressing CA3b interneurons. Several expression differences emerged after CIS. Both CIS females and males compared to their US counterparts had elevated: 1) PENK-expressing dentate granule cells and interneurons in CA1 and CA2/3a; 2) OPRD1 probe number and cell expression in CA1, CA2/3a and CA3b and the dentate gyrus; and 3) OPRK1-expressing interneurons in the dentate hilus. Also, CIS males compared to US males had elevated: 1) PDYN expression in granule cells; 2) OPRD1 probe and interneuron expression in CA2/3a; 3) OPRM1 in granule cells; and 4) OPRK1 interneuron expression in CA2/3a. The sex-specific changes in hippocampal opioid gene expression may impact network properties and synaptic plasticity processes that may contribute to the attenuation of oxycodone CPP in CIS males. This article is protected by
A distinct metabolically defined central nucleus circuit bidirectionally controls anxiety-related behaviors

The Journal of neuroscience : the official journal of the Society for Neuroscience

2022 Feb 01

Ren, J;Lu, CL;Huang, J;Fan, J;Guo, F;Mo, JW;Huang, WY;Kong, PL;Li, XW;Sun, LR;Sun, XD;Cao, X;
PMID: 35105676 | DOI: 10.1523/JNEUROSCI.1578-21.2022

Anxiety disorders are debilitating psychiatric diseases that affect approximately 16% of the world's population. Although it has been proposed that the central nucleus of the amygdala (CeA) plays a role in anxiety, the molecular and circuit mechanisms through which CeA neurons modulate anxiety-related behaviors are largely uncharacterized. Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of polyunsaturated fatty acids, and has been shown to play a role in psychiatric disorders. Here, we reported that sEH was enriched in neurons in the CeA and regulated anxiety-related behaviors in adult male mice. Deletion of sEH in CeA neurons but not astrocytes induced anxiety-like behaviors. Mechanistic studies indicated that sEH was required for maintaining the the excitability of sEH positive neurons (sEHCeA neurons) in the CeA. Using chemogenetic manipulations, we found that sEHCeA neurons bidirectionally regulated anxiety-related behaviors. Notably, we identified that sEHCeA neurons directly projected to the bed nucleus of the stria terminalis (BNST) (sEHCeA-BNST). Optogenetic activation and inhibition of the sEHCeA-BNST pathway produced anxiolytic and anxiogenic effects, respectively. In summary, our studies reveal a set of molecular and circuit mechanisms of sEHCeA neurons underlying anxiety.SIGNIFICANCE STATEMENTsEH, a key enzyme that catalyzes the degradation of EETs, is shown to play a key role in mood disorders. It is well-known that sEH is mostly localized in astrocytes in the prefrontal cortex and regulates depressive-like behaviors. Notably, sEH is also expressed in CeA neurons. While the CeA has been studied for its role in the regulation of anxiety, the molecular and circuit mechanism is quite complex. In the present study, we explored a previously unknown cellular and circuitry mechanism that guides sEHCeA neurons response to anxiety. Our findings reveal a critical role of sEH in the CeA, sEHCeA neurons and CeA-BNST pathway in regulation of anxiety-related behaviors.
ZBTB20 is crucial for the specification of a subset of callosal projection neurons and astrocytes in the mammalian neocortex

Development (Cambridge, England)

2021 Aug 15

Medeiros de Araújo, JA;Barão, S;Mateos-White, I;Espinosa, A;Costa, MR;Gil-Sanz, C;Müller, U;
PMID: 34351428 | DOI: 10.1242/dev.196642

Neocortical progenitor cells generate subtypes of excitatory projection neurons in sequential order followed by the generation of astrocytes. The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20) has been implicated in regulation of cell specification during neocortical development. Here, we show that ZBTB20 instructs the generation of a subset of callosal projections neurons in cortical layers II/III in mouse. Conditional deletion of Zbtb20 in cortical progenitors, and to a lesser degree in differentiating neurons, leads to an increase in the number of layer IV neurons at the expense of layer II/III neurons. Astrogliogenesis is also affected in the mutants with an increase in the number of a specific subset of astrocytes expressing GFAP. Astrogliogenesis is more severely disrupted by a ZBTB20 protein containing dominant mutations linked to Primrose syndrome, suggesting that ZBTB20 acts in concert with other ZBTB proteins that were also affected by the dominant-negative protein to instruct astrogliogenesis. Overall, our data suggest that ZBTB20 acts both in progenitors and in postmitotic cells to regulate cell fate specification in the mammalian neocortex.
Expression of TAS2R14 in the intestinal endocrine cells of non-human primates

Genes & genomics

2021 Feb 20

Hayashi, M;Inaba, A;Hakukawa, M;Iwatsuki, K;Imai, H;Masuda, K;
PMID: 33609226 | DOI: 10.1007/s13258-021-01054-7

Recent studies have demonstrated that genes related to bitter taste receptors (TAS2Rs) on various chromosomes are expressed in extra-oral organs of various animals. The bitter taste receptor TAS2R14 is conserved among primate species and shows broad ligand sensitivity. Mice have a number of orthologues to primate TAS2R14 located in tandem on chromosome 16; however, their expression patterns are not unique. We characterized the expression of TAS2R14 in various cell types in the intestines of the rhesus macaque and evaluated its role in hormone production in the gut. TAS2R14 expression was examined in the intestines of rhesus macaques, a common non-human primate model, by RT-qPCR and immunohistochemical staining. Mean expression levels of TAS2R14 in the duodenum, ileum, and colon were similar to each other and were lower than those in circumvallate papillae. An immunohistochemical analysis revealed TAS2R14 immunoreactivity in enteroendocrine cells positive for cholecystokinin, serotonin, and the G protein GNAT3. These results suggest that primate TAS2R14 is broadly expressed in the intestine, mainly in enteroendocrine cells, and promotes gut hormone secretion in response to bitter stimuli.
Elucidating the role of long intergenic non-coding RNA 339 in human endometrium and endometriosis

Molecular human reproduction

2021 Feb 08

Holdsworth-Carson, SJ;Churchill, M;Donoghue, JF;Mortlock, S;Fung, JN;Sloggett, C;Chung, J;Cann, L;Teh, WT;Campbell, KR;Luwor, R;Healey, M;Montgomery, G;Girling, JE;Rogers, PAW;
PMID: 33576410 | DOI: 10.1093/molehr/gaab010

Endometriosis is a complex disease, influenced by genetic factors. Genetic markers associated with endometriosis exist at chromosome 1p36.12 and lead to altered expression of the long intergenic non-coding RNA 339 (LINC00339), however the role of LINC00339 in endometriosis pathophysiology remains unknown. The aim of this work was to characterise the expression patterns of LINC00339 mRNA in endometrium and endometriotic lesions in situ and to determine the functional role of LINC00339 in human endometrium. We employed RNA-sequencing, quantitative RT-PCR and in situ hybridisation to investigate the abundance of LINC00339 transcripts in endometrium and endometrial cell lines and to describe the pattern and localisation of LINC00339 expression in endometrium and endometriotic lesions. LINC00339 mRNA expression was manipulated (overexpressed and silenced) in endometrial stomal cell lines and RNA-sequencing data from overexpression models were analysed using online bioinformatics platforms (STRING and Ingenuity Pathway Analysis) to determine functional processes. We demonstrated the expression of LINC00339 in endometriotic lesions for the first time; we found LINC00339 expression was restricted to the lesion foci and absent in surrounding non-lesion tissue. Furthermore, manipulation of LINC00339 expression in endometrial stromal cell lines significantly impacted the expression of genes involved in immune defense pathways. These studies identify a novel mechanism for LINC00339 activity in endometrium and endometriosis, paving the way for future work, which is essential for understanding the pathogenesis of endometriosis.
Deficiency of Cathelicidin-related Antimicrobial Peptide Promotes Skin Papillomatosis in Mus musculus Papillomavirus 1-infected Mice

Acta dermato-venereologica

2021 Jan 05

Dorfer, S;Strasser, K;Reipert, S;Fischer, MB;Shafti-Keramat, S;Bonelli, M;Schröckenfuchs, G;Bauer, W;Kancz, S;Müller, L;Handisurya, A;
PMID: 33349888 | DOI: 10.2340/00015555-3733

Cathelicidins have been reported to inhibit human papillomavirus infection in vitro; however, nothing is known about their activity in vivo. In this study, experimental skin infection with Mus musculus papillomavirus 1 resulted in robust development of cutaneous papillomas in cyclosporine A-treated C57BL/6J mice deficient for the murine cathelicidin-related antimicrobial peptide (CRAMP), in contrast to wild-type controls. Analysis of the underlying mechanisms revealed moderate disruption of virion integrity and lack of interference with viral entry and intracellular trafficking by a synthetic CRAMP peptide. Differences in the immune response to Mus musculus papillomavirus 1 infection were observed between CRAMP-deficient and wild-type mice. These included a stronger reduction in CD4+ and CD8+ T-cell numbers in infected skin, and lack of Mus musculus papillomavirus 1-specific neutralizing antibodies in response to cyclosporine A in the absence of endogenous CRAMP. CRAMP has modest direct anti-papillomaviral effects in vitro, but exerts protective functions against Mus musculus papillomavirus 1 skin infection and disease development in vivo, primarily by modulation of cellular and humoral immunity.
Radiochemical In Situ Hybridization in Developmental Studies of the Pineal Gland

Methods in molecular biology (Clifton, N.J.)

2022 Sep 30

Rath, MF;Møller, M;
PMID: 36180679 | DOI: 10.1007/978-1-0716-2593-4_10

Radiochemical in situ hybridization enables detection of gene expression in small areas of the brain, such as the developing pineal gland in rodents. The method combines determination of spatial and temporal gene expression profiles with semiquantitative analyses. We here describe the procedure of radiochemical in situ hybridization on the developing rat pineal gland ranging from preparation of fetal tissue for in situ hybridization to principles of quantification.
Current and future perspectives of single-cell multi-omics technologies in cardiovascular research

Nature Cardiovascular Research

2023 Jan 18

Tan, W;Seow, W;Zhang, A;Rhee, S;Wong, W;Greenleaf, W;Wu, J;
| DOI: 10.1038/s44161-022-00205-7

Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research.
SOC-I-04 Identification of biomarkers and outcomes of endocrine disruption in adult human ovarian cortex

Toxicology Letters

2022 Sep 01

Li, T;Vazakidou, P;Leonards, P;Damdimopoulou, A;Panagiotou, E;Arnelo, C;Jansson, K;Pettersson, K;Duursen, M;Damdimopoulou, P;
| DOI: 10.1016/j.toxlet.2022.07.075

Endocrine disrupting chemicals (EDCs) are raising concerns about adverse effects on fertility in women as they have been shown to disrupt steroidogenesis and ovarian function in animal studies, and they associate to reduced fertility in human cohort studies. However, there is a lack of information regarding mechanisms of action and effects in humans. Our study aims to identify molecular mechanisms of endocrine disruption using two well-known human EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), via controlled exposure studies in ovarian cell lines and human ovarian tissue culture in vitro. Ovarian cortical tissue slices obtained from tissue collected from Caesarean section (c-section) patients at Karolinska University Hospital was exposed to 10-9 M to 10-5 M KTZ and 10-10 M to 10-6 M DES in vitro for 6 days. Follicle survival and growth were studied using histology, steroid production by liquid-chromatography-mass spectrometry (LC-MS/MS), and tissue viability by cytotoxicity and fibrosis assays. RNA sequencing was performed on primary ovarian cells and ovarian granulosa cell cancer cell lines COV434 and KGN that were exposed for 24 hours to the same concentrations of DES and KTZ as the tissue culture. Selected potential biomarkers were validated using real-time quantitative polymerase chain reaction (RT-qPCR) in the cells, and by in situ RNA hybridization in exposed tissue. Significantly lower non-growing follicle densities (i.e. primordial, intermediary, and primary follicles) were observed in DES 10-10 M group compared to vehicle control. A decrease trend was also observed in DES high dose group and low level KTZ exposed group. On the other hand, slightly higher growing follicle density was shown in high level KTZ exposed group. Levels of pregnenolone and progesterone were significantly reduced in KTZ 10-5 M exposed group. RNA sequencing showed that 445 and 233 differential expressed genes (DEGs) (FDR< 0.1) were affected in DES and KTZ exposed group, respectively, in the cell culture. Gene set variation analysis (GSVA) showed that both DES and KTZ modulated MTORC1 signaling, which was critical for primordial follicle activation and steroidogenesis. We selected stear-oyl-CoA desaturase (SCD), a gene that was shown to involved in cholesterol homeostasis, oocyte maturation and steroidogenesis, for validation as a potential biomarker. Up-regulation of was confirmed in response to KTZ by PCR and RNAscope. In conclusion, DES and KTZ affected folliculogenesis and steroidogenesis in human adult ovarian cortex and SCD may serve as a potential biomarker in response to exposure. Further validation of this potential biomarker may help improve the existing testing guideline and subsequently, contributing to better regulation of chemical in our global market.
Modulation of Purinergic Signaling in Keratinocytes in Spared Nerve Injury Model of Neuropathic Pain

The Journal of Pain

2022 May 01

Isaeva, E;Mecca, C;Stucky, C;
| DOI: 10.1016/j.jpain.2022.03.025

Epidermal keratinocytes express various purinergic 2 receptors that play an essential role in cell growth, differentiation, and proliferation. In the conditions of injury, concentrations of extracellular adenosine triphosphate (ATP) may dramatically increase due to cell damage and inflammatory processes. In this situation activation of purinergic signaling in keratinocytes could act as a double-edged sword contributing to skin regeneration or cell apoptosis. As the role of keratinocytes in transducing and modulating nociceptive stimuli has been increasingly appreciated in recent years, the aim of the present study was to evaluate whether peripheral nerve injury affects purinergic signaling in keratinocytes. Spared nerve injury (SNI), a classical model of peripheral neuropathic pain, was induced in mice. The injury was induced by sparing of the tibial nerve, and ligation and cut of the sural and common peroneal nerves. Keratinocytes were isolated and cultured on Days 2-4 post-injury and ATP-mediated calcium responses in keratinocytes were examined by confocal imaging. On average, the number of keratinocytes that responded to ATP with an increase in intracellular calcium gradient as well as the magnitude of the peak response was not significantly different between sham and SNI groups. However, significantly less delay in ATP-induced increase in intracellular calcium concentration was observed in keratinocytes in SNI group compared to sham. Selective pharmacological inhibition of keratinocyte response to ATP indicated a major role of P2 × 4 receptors in the modulation of calcium homeostasis in SNI. Our results indicate that epidermal purinergic signaling undergoes dramatic changes following peripheral nerve injury that may contribute to injury-induced mechanical hypersensitivity.
Strain-specific adaptations in placental transport function optimise fetal outcomes in mice lacking TRPV2

Placenta

2021 Sep 01

De Clercq, K;López-Tello, J;Katanosaka, Y;Voets, T;Sferruzzi-Perri, A;Vriens, J;
| DOI: 10.1016/j.placenta.2021.07.067

Objectives: We recently observed that Transient Receptor Potential V2 knockout (TRPV2 KO) mice show late-onset fetal growth restriction and perinatal lethality, which are most severe on a C57BL6 compared to 129Sv background. In the placenta of both strains, TRPV2 expression is confined to the labyrinth zone (Lz). Here, we investigated whether there were strain-specific alterations in placental morphology and nutrient transport that may underlie the difference in fetal outcomes due to TRPV2 KO. Methods: The cellular expression of TRPV2 was assessed in wildtype placentas using RNAscope. Placental clearance of glucose and amino acid (AA) was assessed using 3H-methyl-D glucose and 14C-aminoisobutyric acid in vivo on E18.5 (term=20 days). In representative placentas, mRNA levels of glucose (SLC2A1,3) and AA transporters (SLC38A1,2,4) were quantified by q-RT-PCR in the Lz and placental structure determined using stereology. Data were compared between wildtype and TRPV2 KO littermates on a 129Sv and C57Bl6 background. Results: In the labyrinth, TRPV2 was highly expressed by syncytial trophoblast and absent from fetal endothelial cells. The placental transfer of glucose and AA was adaptively increased in TRPV2129Sv KO compared to WT littermates (+15% and +130%, respectively). This was not related to a change in the expression of glucose or amino acid transporters in TRPV2129Sv KOs. Placental AA transport was also increased in TRPV2C57 KO, albeit to a lesser extent (+35%), while glucose transport and expression of SLC2A1 and SLC2A3 were decreased (-20%, -35% and -52%, respectively). Lz volume was similarly decreased in TRPV2129Sv and TRPV2C57 KOs (-18% and -28%, respectively). Conclusion: Thus, there are strain-specific adaptations in placental transport function that seem to optimise fetal outcomes in response to TRPV2 deficiency. The less extensive upregulation of placental AA transport and failure to upregulate glucose transport in TRPV2C57 KOs likely explains poorer offspring growth and survival compared to TRPV2129Sv KOs.
EPO synthesis induced by HIF-PHD inhibition is dependent on myofibroblast transdifferentiation and colocalizes with non-injured nephron segments in murine kidney fibrosis

Acta physiologica (Oxford, England)

2022 May 01

Kobayashi, H;Davidoff, O;Pujari-Palmer, S;Drevin, M;Haase, VH;
PMID: 35491502 | DOI: 10.1111/apha.13826

Erythropoietin (EPO) is regulated by hypoxia-inducible factor (HIF)-2. In the kidney, it is produced by cortico-medullary perivascular interstitial cells, which transdifferentiate into collagen-producing myofibroblasts in response to injury. Inhibitors of prolyl hydroxylase domain (PHD) dioxygenases (HIF-PHIs) activate HIF-2 and stimulate kidney and liver EPO synthesis in patients with anemia of chronic kidney disease (CKD). We examined whether HIF-PHIs can reactivate EPO synthesis in interstitial cells that have undergone myofibroblast transdifferentiation in established kidney fibrosis.We investigated Epo transcription in myofibroblasts and characterized the histological distribution of kidney Epo transcripts by RNA in situ hybridization combined with immunofluorescence in mice with adenine nephropathy (AN) treated with HIF-PHI molidustat.  Lectin absorption chromatography was used to assess liver-derived EPO.  In addition, we examined kidney Epo transcription in Phd2 knockout mice with obstructive nephropathy.In AN, molidustat-induced Epo transcripts were not found in areas of fibrosis and did not colocalize with interstitial cells that expressed α-smooth muscle actin, a marker of myofibroblast transdifferentiation. Epo transcription was associated with megalin-expressing, kidney injury molecule 1-negative nephron segments and contingent on residual renal function. Liver-derived EPO did not contribute to serum EPO in molidustat-treated mice. Epo transcription was not associated with myofibroblasts in Phd2 knockout mice with obstructive nephropathy.Our studies suggest that HIF-PHIs do not reactivate Epo transcription in interstitial myofibroblasts and that their efficacy in inducing kidney EPO in CKD is dependent on the degree of myofibroblast formation, the preservation of renal parenchyma and the level of residual renal function.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?