Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (5)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (5)
  • Pomc (3) Apply Pomc filter
  • Fgf21 (3) Apply Fgf21 filter
  • GDF15 (2) Apply GDF15 filter
  • AGRP (2) Apply AGRP filter
  • Npy (2) Apply Npy filter
  • Hcrt (1) Apply Hcrt filter
  • CD68 (1) Apply CD68 filter
  • Ptger4 (1) Apply Ptger4 filter
  • DRD1 (1) Apply DRD1 filter
  • FGFR1 (1) Apply FGFR1 filter
  • TSLP (1) Apply TSLP filter
  • GLP1R (1) Apply GLP1R filter
  • SLC32A1 (1) Apply SLC32A1 filter
  • lhb (1) Apply lhb filter
  • LEPR (1) Apply LEPR filter
  • Htr1b (1) Apply Htr1b filter
  • Npffr2 (1) Apply Npffr2 filter
  • CARTPT (1) Apply CARTPT filter
  • Nts (1) Apply Nts filter
  • Slc17a8 (1) Apply Slc17a8 filter
  • VGAT (1) Apply VGAT filter
  • Cre (1) Apply Cre filter
  • CALCR (1) Apply CALCR filter
  • PMCH (1) Apply PMCH filter
  • SLUG (1) Apply SLUG filter
  • Soat1 (1) Apply Soat1 filter
  • ASIC1a (1) Apply ASIC1a filter
  • Hcrt1 (1) Apply Hcrt1 filter
  • Insulin receptor (1) Apply Insulin receptor filter
  •  Fgf11 (1) Apply  Fgf11 filter
  • Npy  (1) Apply Npy  filter
  • Mouse/Human: Fkbp5 (1) Apply Mouse/Human: Fkbp5 filter
  • Mouse: Sf1 (1) Apply Mouse: Sf1 filter
  • LNP-mLuc (1) Apply LNP-mLuc filter
  • Gipr / GIPR (1) Apply Gipr / GIPR filter
  • IR-B (1) Apply IR-B filter
  • IR-A (1) Apply IR-A filter

Product

  • RNAscope (2) Apply RNAscope filter
  • TBD (2) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Obesity filter Obesity (5)
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Apetite (1) Apply Apetite filter
  • diabetes (1) Apply diabetes filter
  • Energy Homeostasis (1) Apply Energy Homeostasis filter
  • Inflammation (1) Apply Inflammation filter
  • Metabolism (1) Apply Metabolism filter
  • Neuroscience (1) Apply Neuroscience filter
  • Other: Metaboliosm (1) Apply Other: Metaboliosm filter
  • Other: Stomach (1) Apply Other: Stomach filter

Category

  • Publications (5) Apply Publications filter
RF10 | PMON205 LH/CG Receptor Activation Protects Mice from Diet-Induced Obesity and Modifies Adipose Tissue Immune Response

Journal of the Endocrine Society

2022 Nov 01

Lizneva, D;Ievleva, K;Gumerova, A;Shelly, E;Korkmaz, F;Muradova, V;Netto, J;Kuo, T;Sultana, F;Kumar, P;Kramskiy, N;Ryu, V;Padilla, A;Hutchison, S;Yuen, T;Zaidi, M;
| DOI: 10.1210/jendso/bvac150.058

Menopause is associated with the loss of LH ovulatory surges and enhanced visceral adiposity. Visceral fat depots increase from 5-8% at premenopause to 15-20% of total body fat at postmenopause. Here, we report that high-dose LH, hCG, or small molecule LH/CGR agonist ORG43553 injected twice-a-week into 14-weeks-old C57BL/6 male mice protects them from diet-induced obesity. Testosterone levels were elevated in mice treated with LH or hCG, but not with ORG43553. Notably, the anti-obesity action of LH/hCG is independent of testosterone, as blocking the androgen receptor using flutamide yielded similar results. Importantly, male Lhcgr knockout mice on a high-fat diet treated with LH failed to display a reduction in adiposity, confirming the in vivo specificity of action. Furthermore, our data phenocopied Lhcgr haploinsufficiency in mice. We confirmed the presence of Lhcgr in mouse genital and inguinal fat pads, adipose-derived stromal vascular cells, as well as in differentiated and undifferentiated 3T3-L1 murine adipocytes by qPCR, RNAscope in situ hybridization, and immunohistochemistry. Sanger sequencing showed that the extracellular domain of Lhcgr in genital fat depot was identical to the ovarian receptor. Similarly, we identified LHCGR in human subcutaneous and visceral fat depots. Binding of intraperitoneally injected AlexaFluor-488-labeled hCG was found not only in mouse ovary, but also in genital and subcutaneous fat pad, further confirming the presence of LHCGR in adipose tissue. This binding could be competitively displaced in 3T3-L1 cells using unlabeled hCG. LH, hCG and ORG43553 activated ERK1/2 in a dose-dependent manner in undifferentiated and differentiated 3T3-L1 cells, suggesting that the adipose LHCGR is fully functional. LH, hCG, and ORG43553 reduced adipogenic differentiation in 3T3-L1 cells, which is further confirmed by RNA sequencing. Moreover, we observed, that LH and hCG also alters several aspects of immune response in adipose tissue, including inflammatory response and adaptive immunity. In conclusion, we demonstrated that LH/CG receptors are present and fully functional in adipose tissue, and that high-dose intermittent activation of LHCGR in mouse fat depots protects mice from diet-induced obesity and modifies adipose tissue immune response. Presentation: Saturday, June 11, 2022 1:42 p.m. - 1:47 p.m., Monday, June 13, 2022 12:30 p.m. - 2:30 p.m.
Acute changes in systemic glycemia gate access and action of GLP-1R agonist on brain structures controlling energy homeostasis

Cell reports

2022 Nov 22

Bakker, W;Imbernon, M;Salinas, CG;Moro Chao, DH;Hassouna, R;Morel, C;Martin, C;Leger, C;Denis, RGP;Castel, J;Peter, A;Heni, M;Maetzler, W;Nielsen, HS;Duquenne, M;Schwaninger, M;Lundh, S;Johan Hogendorf, WF;Gangarossa, G;Secher, A;Hecksher-Sørensen, J;Pedersen, TÅ;Prevot, V;Luquet, S;
PMID: 36417883 | DOI: 10.1016/j.celrep.2022.111698

Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.
Mfge8 is expressed by pericytes in human gastric antrum submucosa from obese patients

American journal of physiology. Cell physiology

2023 Mar 20

Perrino, BA;Malogan, J;Cobine, CA;Sasse, KC;
PMID: 36939201 | DOI: 10.1152/ajpcell.00043.2023

The main function of the stomach is to digest ingested food. Gastric antrum muscular contractions mix ingested food with digestive enzymes and stomach acid and propel the chyme through the pyloric sphincter at a rate in which the small intestine can process the chyme for optimal nutrient absorption. Mfge8 binding to α8β1 integrins helps regulate gastric emptying by reducing the force of antral smooth muscle contractions. The source of Mfge8 within gastric muscles is unclear. Since Mfge8 is a secreted protein, Mfge8 could be delivered via the circulation, or be locally secreted by cells within the muscle layers. In this study we identify a source of Mfge8 within human gastric antrum muscles using spatial transcriptomic analysis. We show that Mfge8 is expressed in subpopulations of Mef2c+ perivascular cells within the submucosa layer of the gastric antrum. Mef2c is expressed in subpopulations of NG2+ and PDGFRB+ pericytes. Mfge8 is expressed in NG2+/Mef2c+ pericytes, but not in NG2+/Mef2c-, PDGFRB+/Mef2c-, or PDGFRB+/Mef2c+ pericytes. Mfge8 is absent from CD34+ endothelial cells but is expressed in a small population of perivascular ACTA2+ cells. We also show that α8 integrin is not expressed by ICC, supporting the findings that Mfge8 attenuates gastric antrum smooth muscle contractions by binding to α8β1 integrins on enteric smooth muscle cells. These findings suggest a novel, supplementary mechanism of regulation of gastric antrum motility by cellular regulators of capillary blood flow, in addition to the regulation of gastric antrum motility by the enteric nervous system and the SIP syncytium.
Type 2 diabetes is associated with increased circulating levels of 3-hydroxydecanoate activating GPR84 and neutrophil migration

iScience

2022 Nov 01

Mikkelsen, R;Arora, T;Trošt, K;Dmytriyeva, O;Jensen, S;Meijnikman, A;Olofsson, L;Lappa, D;Aydin, Ö;Nielsen, J;Gerdes, V;Moritz, T;van de Laar, A;de Brauw, M;Nieuwdorp, M;Hjorth, S;Schwartz, T;Bäckhed, F;
| DOI: 10.1016/j.isci.2022.105683

Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with non-diabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.
Brain-to-BAT- and Back?: Crosstalk between the Central Nervous System and Thermogenic Adipose Tissue in Development and Therapy of Obesity

Brain sciences

2022 Dec 01

Till, A;Fries, C;Fenske, WK;
PMID: 36552107 | DOI: 10.3390/brainsci12121646

The body of mammals harbors two distinct types of adipose tissue: while cells within the white adipose tissue (WAT) store surplus energy as lipids, brown adipose tissue (BAT) is nowadays recognized as the main tissue for transforming chemical energy into heat. This process, referred to as 'non-shivering thermogenesis', is facilitated by the uncoupling of the electron transport across mitochondrial membranes from ATP production. BAT-dependent thermogenesis acts as a safeguarding mechanism under reduced ambient temperature but also plays a critical role in metabolic and energy homeostasis in health and disease. In this review, we summarize the evolutionary structure, function and regulation of the BAT organ under neuronal and hormonal control and discuss its mutual interaction with the central nervous system. We conclude by conceptualizing how better understanding the multifaceted communicative links between the brain and BAT opens avenues for novel therapeutic approaches to treat obesity and related metabolic disorders.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?